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ABSTRACT

Theoretical and experimental structura! response investigations
of space-vehicle-type siructures under suddenly applied external sur-
face loads are described. The simulation of 2 simultaneous impulsive
load by a traveling load such as produced by an explosive is analyzed
for the string and membrane. Three dynamic buckling problems are
investigated: (1) dynamic plastic-flow buckling of flat plates due to
in-plane flow, (2) dynamic elastic buckling of a thin cylindrical shell
under axial impact, and (3) dynamic buckling of cylindrical shells of
a strain-rate sensitive material., A scheme for correlating the results
of structural response investigations concerned with dynamic failure

loads of structures is presented and a brief review of available results

is given.
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l. INTRODUCTION

he work covered in this report is an extension of that described
. * s o . C e .
in[1l.1] and [1.2]. The specific motivation for the investigations is

discussed in Volume I of [ 1.1].

The work reported here falls in three major parts: simulation
of simultaneous loads by traveling loads, invertigations of dynamic
buckling of structures, and correlation of structural response infor-

mation.

Simulation of simultaneous loads by traveling loads is of
considerable interest because of the relative ease of using explosives
to obtain impulsive loads. In Section 2, the response of the string
and the membrane to traveling loads, as a function of load velocity,
is investigated. It is found that detonation velocities are sufficientiy

high to give a good approximation to a simultaneous load.

Buckling has been found to be a significant response mode for
space vehicles under suddenly applied external surface loads. In
the past year three dynamic buckling problems have been investigated.
These are reported in Sections 3, 4, and 5. Section 3 describes
dynamic plastic-flow buckling of a plate due to in-plane flow. Section 4
describes dynamic elastic buckling of a thin cylindrical shell under
axial impact. Section 5 describes dynamic buckling of a cylindrical

shell of a strain-rate sensitive material.

Correlation of structural response information related to

failure loads of space -vehicle-type structures is desirable to make

-
Numbers in brackets indicate the references listed at the end of
each section.

AT © IS 3=

o AL ey




7 RS

it 5

T AR AR s e .

R

B S

A i o o

1 o b AT NS i, AL AN RN ¢ P

C e e - i e e AP S 4 e ks W ima e v e WL e R e

the results more accessible and to indicate areas where additional
work i8 required. In Section 6 it is shown that for dynamic loads, .
the amplitude~impulse plane is a convenient and meaningful way to
present failure loads. Using this format, a brief summary of .

available results is given,

In Section 7 some comments are made on the separation of
the response of space vehicles to suddenly applied surface loads
into shock response and structural response, and on prediction of

accelerations transmitted to internal components.

e ———
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2. SIMULATION OF SIMULTANEOUS IMPULSIVE LOADS
ON STRINGS AND MEMBRANES WITH EXPLOSIVES

2,1 INTRODUCTION

S A

Explosives are a convenient means of simulating simultaneous
impulsive loads on structures. The explosive imparts an impulse by
means of a high-pressure pulse acting within a narrow reaction zone
at the detonation front which travels over the surface away from the
initiation point at the detonation velocity. Consequently, elements
of the structure receive impulsive velocities successively and not
simultaneously as desired. Good simulation of a simultaneously
applied impulse over an area can be expected if the detonation velocity

is sufficiently large, but some criterion is required to decide when

I g M e e

this velocity is large enough.

In this section the responses of a stretched infinite string and

mns s Ve o e

a stretched infinite membrane to traveling concentrated forces repre-

U

senting a detonation front are investigated. The string has a concen-
trated force of magnitude 2P suddenly applied to it which is supposed
to separaie immediately into two equal forces of magnitude P and
travel in opposite directions each at velocity V (Fig. 2.1). The '
membrane has applied to it a '

» » circular ring load of magnitude
v I I -V P per unit length the radius of
03
- T -3 which increases at a constant
4 - 20000 Veloc‘ty \'4 (Figg 2. Z). Of
particular interest are the dis-

FIG. 2.1 STRING PROBLEM placement and velocity distri-

butions imparted to the string and
membrane when the loads are moving supersonically relative to the
wave velocities. The velocity distributions are compared with the
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constant velocity distribution
resulting from the whole impulse ,

T

being applied uniformly over the
length or area traversed by the

load.

- v Past studies originated with

N a treatment by Goodier [2.1] of
I ‘- sa-sa-i7  a stretched semi-infinite string
subjected to a concentrated force
which runs on to it at the support
and travels at a constant velocity.

YT 3, AT, A

FIG. 2.2 MEMBRANE PROBLEM

It was shown that the velocity distribution approaches that due to an

- ideal impulse covering the portion of the string traversed by the load
as the velocity of the force becomes large. Florence [2.2] treated
the corresponding problem for the beam and included the problem
corresponding to the string problem studied here. A similar con-
clusion wae drawn but additionally the velocity distribution was found
much more uniform when initiativn was away from a fixed support.
This permitted very uniform distributions of velocity with practical
values of beam wave velocities and detonation velocities. Also, it
“was found desirable to have a detonation velocity supersonic relative

to the beam wave velocities.

It is shown here that with central initiation and with practical
values of wave and detonation velocities, a uniform velocity distri-
bution on the string and membrane is achieved. Also, results are
presented to describe the distributions.

2,2 STRING THEORY

Let the two constant loads P originate at time t = 0 at the

origin O(x,y) (Fig. 2.1) and separate, each with a constant velocity »

V . Let the string have mass m per unit length, be stretched by a

force s and be at rest at time t = 0 . Then the differential equation .
6
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of motion, the initial conditions, and boundary conditions are

2

(o 7]
[\

1 3
':Z' I (x - Vt) x> 0

t mc¢

o/
[+4

X
d
y(x, 0) = StZ(x. 0)=0
and

Lim y(x,t) = 0
X @

g(o.c)w

where ¢ = (ts/m)”2

delta function.

Applying the Laplace transformation to (2. 1) and (2.3), and

making use of (2.2) gives

2-

d 2 - P -px/V
- ple)y =g
;;% mc V

% (0,p)=0 Lim ;(x. p)=0

x>

The solution of (2. 4) satisfying (2. 5) is

- _P 1 -px/c . _-px/V, 1
yix, p) = = =gy (ce -Ve )~
V -c P
?

is the string wave velocity, and & is the Dirac

(2.1)

(2.2)

(2.3)

i

!
(2. 4)
2.5) g
(2. 6)




Inverting the transform (2. 6), noting that the only singularity

is a simple pole at the origin of the p plane, yields

r

3w

- P
y(x,t) = —

yix,t) = 4

Va=-clit
V-c

. !Vt -x)2

VvV -c¢

0 <x <ct

ct<x<Vt> 0<c<V

Vt < x J

0 <x <Vt

Vt<x<ct> 0<V<c

ct < x J

0 <x < ¢t

ct<x<Vt> 0<cxV

Vt < x

(2.7)

{2. 8}

2.9)

R RN S 5 G e
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(P . {c-V)
m =z .2
c -V
%1 - P c
t ™m Z 2
c -V
0
\

0 <x < Vt

Vt < x < ct

¢t < x

}0<V<c (2. 10)

J

An isolated string element of length Ax with a force P

traveling over it in a time At receives an impulse PAt. Let the

velocity acquired be v . Then the momentum acquired i3 mAxv =

Pit. Since At = Ax/V , the velocity of the isolated slement is

v = P/mV. Hence the impulse delivered is P/V . If P increcases

proportiemtzly with v, i.e., P/V = where ] is a constant, a

series of these elements will approximate a finite length of string

subjected to an impulse I per unit length which imparts a velocity

v . One requirement for good simulation is therefore that y /v
should be approximately unit (y, = dy/ ).

Fiﬁ_meu Z.3(a) and 2. 3(b) show the velocity and displacement
distributions along the string according to (2.9) and (2. 7) with
V = nc (n>1). The force is moving supersonically relative to the

string wave velocity. To illustrate the degree of simulation consider

the value n = 13. From Fig. 2.3(a) it is seen that the normal
velocity of the string over one-nineteenth of the distance “iaversed

by the load is 5 percent less than that due to the same impulse uni-

formly distributed. Over the remaining distance it is about 0.3

percent greater.

Good ‘simulation also requires small displacements. Figure

2.3(b) shows the displacements witha maximumof y = vtn/(n+l) or
y/x = (v/Vin/(n+]) = y‘lv where x is the load position. Hence the

AT~ e o o g 4
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FiG. 2.3 VELOCITIES AND DISPLACEMENTS
OF STRINC

of ¢ = 0,08 the ratio v/V = 0,045,

ratio yt/V or v/V should be
small, In order to estimate
reasonable values of the ratio
v/V one can equate the kinetic
energy imparted to the plastic
work done, assuming this to be
much larger ihan the elastic
strain-energy capacity. If the
final utrain is ¢ , the yield stress
is Oy , and the cross-sectional
area is A , the energy equation
is mv2/2=0 €A . Now m = pA,

is the maxi-
mum wave velocity of the string,
p being the mass density. Thus
v=ey 2¢ and v/V =~/2—E-/By where
BY = V/c! . As a practical example
consider an aluminum string
stretched almcst to yielding at
o, = 50,000 Ib/in®. With 2 mass
density p =0, 00025 lb-gec” /in
the wave velocity is about cy =
0.355 mm/psec. As an example
of an explosive with one of the
slower detonation velocities, oxy -
acetylene gas (50/50 mixture by
volume) has V = 3 mm/usec so
that B a9 . Taking a large strain

Hence the maximum displacement

is approximately y = 0.045x , where x is the load position, or about

5 percen® of the distance travelied by

the load. Ueing the sheet explosive

F.L 506D with a detonation velocity of 7 mm/pusec this relation becomes

y =0.019x and BwaO.

10
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Figures 2,3(c) and 2, 3(d) show the velocity and displacement
distributions along the string according to (2. 10) and (2. 8) with

¢ =nV (n>1). For no value of n is the line yt/v = 1 approximated
for 0 sx/ct < 1/n so that simulation is nct possible when the load

moves subsonically relative to the string wave velocity.
2.3 MEMBRANE THEORY

An infinite stretched membrane is subjected to a ring load of
magnitude P per unit length of circumfercnce (Fig., 2.2). The radius
of the ring increases at a constant velocity V . Choosing the origin
of the radial coordinate r at the starting or detonation point when the
time is t = 0, the equation of motion, initial conditions and boundary

conditions are

2 2

9 +l§1-1’-912.=-?-2.6(r-w) (2, 11)

or T r‘ ¢ mc :

y(r,0) = L (r,0) =0 (2. 12)

glrﬁ (0,t)= 0  Limy(r,t) =0 (2. 13)
re4+o

where y is the deflection, m the mass per unit area of membrane
and ¢ = (S/m)l/2
per unit edge length.

is the membrane wave velocity. S is the tension

Let y(\,t) be the Hankel transform of order zero of the function
y(r,t). Then applying such a transformation to Eqs. (2.11) and (2. 12)
gives, with the aid of (2.13)
2-

d 2,2- PVt
;%+c\yLFJ&W) (2. 14)
- L dy -
yono=gno0=0 (2. 15)

11
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The solution of Eq. (2. 14) satisfying conditions (2. 15) is

t
7Ot = % f'n_sin cA (t-n) I, (A Vn )dn (2. 16)
0

and the inverse Hankel transform of (2. 16) is

@ t
yir,t) = % ch(rx) f’qsin oA {t=m) I (\Vn)dndx 2.17)
0 0

Reversing the order of integration in (2, 17) and setting
x =cth (dx = ctd\), p=n/t, a=r/ct and B= V/c yields

1 [
z{a, B) = fudu fJo(u)Jo(Bux)sinx (1-p)dx (2. 18)
0 0
with
2
z = ymc /PVt
In [2.3] may be found the following results:
r
0 0 <y <b-a
[ J

ofJo(ax)Jo(bx)ainyxdx = <WP'1/Z(A, b-a < y < b+ta

— 7 Q.yp-A)  bha <y <
nab)
\ (2.19)
where 0 <a < b and
A = M +a-y%)/2ap (2.20)
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In (2. 19) P_l/2 and Q-I/Z are associated Legendre functions
of the first and second kind and they are related to complete elliptic

integrals of the first kind through the following relations.

P_),2(A) =,F, (1/2,1/2; 1;(1-A)/2) = 2/nK(/(1-A)/2 ) 1<A<1
Q_,z(-A) = TA/ZA - ,F (1/4, 3/4 1; 1/A%) = (2.21)

J2/(1-A)  K(/2/(1-A) ) “® <A<l

where zFl is a hypergeometric function.

Before applying the result (2, 19) to evaluate (2. 18) the latter

should be rewritten in the form

R SR A AR 38 Bt

a/B 1 ®
z(a, 8) = fudu+ fudu] fJo(ax)Jo(Bux)einx (1-p)dx (2.22)
0 a/B 0

In the first double integral of (2.22) 0 s Bu < a, while in the second,
a < Bk S B. Making use of the relation (2.21), the result (2.19)

becomes
’
0 0<l-u<Bp-a  O<a<gp
0<1l-p<g -84 0<Bu<a
[}
1 K(k,) Bp-a<l-p<Bu+a O<a<pp
J_(0x)J_(Bpx)sin(l-p)xdx = I72 Y71 | a-Bu<l-p<g+fp O0<Bu<a
o o T(aBp)
0
1
———TT3 K(k,) a+Bu<i-p<=
n(o8r) 2
_‘ 13
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where the moduli of the complete elliptic integrals K are

ky = [(-ay2]t/?
and
k, = [2(1-a)] }/2
in which
A=[a?+p% 2. (1-8)2] /2080
from (2. 20).

Substituting the appropriate result from (2.23) in the integrals

(2.22) leads to the following results
l<acx<p n(cB)I/Z z = %‘i}) -1 (ﬁ)

0<a<!<B8 1/2 1+a

0<a<p<y TOB) "z = T‘E)‘I“}%)”z(ﬁ) (2.24)

0< B<acxl r!(cx.B)l/2

1-a
L ) - () + T (g3

where

T8

Ik = fu K(k,)dn
0
vy

L) = fu k,K(k, )dp
]
14
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From the deflection expressions (2,24) the velocity distribution

is readily obtained,

) PV )
Cn LA 1

In fact, differentiation of y = PVt z/mc?

gives

(2.25)

and so expressiqns (2.24) have to be differentiated with respect to a.

Singularities arise in this operation but are combined to be eliminated

by considering all limiting processes in the Cauchy principal value

sense.

bution in the form

2
a<a<s BS =R - LM
_nga-l)llz]
2(g-1)
0<gq<l<p mc’dy _ 3z .l I/Z[I(Ha)
0<a<p<l PV ot 2 3'1+8
+n(1+0,)1/2]
2(1+8)
mcza 3z 1 a. 1/2
O<B<(1<l —P—-v. t=T FF [13 T"‘-)

'_n(l-a)l/z]
2(1-p)

where M

0

I (

w s w2 (ko)

Sulvstitution of (2.24) in (2.25) then yields the velocity distri-

1'r(o.+l)}"lZ

)+

2{8+1)

(1+s

B
L= [ {kx) e
0
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It is of interest tv give the velocity expressions for the center
of the membrane since they can be obtained explicitly. Setting r = 0

in (2. 17) and continuing the derivations as before leads to

) |
[1-{nrz-sin” (/e } 1821211621 B> 1
2
)
v =08 = 1/3 B=1
[{cosn t/m} 70622 c0lr1-8%) B<
.
(2.27)

Figures 2. 4(3) and 2. 4(b) show the velocity displacement
distributions over the membrane according to (2.24) and (2.26) when the
force is moving supersonically relative to the membrane wave velocity.
The diagrams have been drawn for the case V =2c¢ (8= 2) but the forms
are similar for all the supersonic cases (8> l); the higher the value of
B , the flatter the velocity curve. Figure 2.5 shows the velocity' for
B=5. As inthe representation of velocity and displacement distri-
butions for the string (Fig. 2.3) the velocity v used to render results
dimensionless is the velocity that would be acquired by all the elements
if they were disconnected from each other, that is, v = P/mV . Hence
good simulation of impulse applied instantaneously over the circular
area swept out by the detonation front is obtained if the curve ytlv
approximates the line yt/v =1(y,m= dy/3t) . Additionally, for good
sirulation the displacements acquired while the load is acting should

be very small.

Figures 2. 4(c) and 2. 4(d) shcw the velocity and displacement
distributions over the membrane according to (2.24) and (2.27) when
the force is moving subsonically relative to the membrane wave
velocity. The diagrams have been drawn for the case V =c¢/2 (8= 1/2)
but the formes are similar for all the subsonic cases (B<1). Because
of the significant disturbances running ahead of the load, good simula-
tion is never possible with subsonic loads. Figure 2. 4(c) shows that
the line yt/v = 1 is not approximated.

16
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‘ FIG, 24 VELOCITIES AND DISPLACEMENTS

OF MEMBRANE

In all supersonic cases the
maximum velocity occurs under
the load at r = Vt and the minimurn
velocity is the velocity in the region
0 <r<ct. The maximum and mini-
mum values of the ratio yt/v are

respectively

82/(8%-1)
and

i 1-{n/z-ein‘l(lls)}/(ez-l)”z]

82/(8%-1)

Table 2.1 liste values of
yt,v for several values of B and

shows the extent of the simulation.
Although the minimum values of
yt/v require high values of 8
before they approximate unity, the
radius of the central portion of
membrane moving at this velocity
is 1/8 tirnes the ragdius of the
loading circle,

As a practical example
consider an aluminum membrane
with & mass density p= 0.00025
lb-saczli;:“ stretched to a stress
of o = 50,000 lb/ina. The wave

1/2 172
velocity ¢ = (S/m) '" = (c/p)

is then about 14, 000 in/sec or about 0. 355 rnm/psec. The detonation

velocities of oxyacetylene gas (50/50 mixture by volume) and sheet
explosive EL 506D are approximately 3 mm/psec and 7 mm/psec

17
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FIG. 2.5 VELOCITY DISTRIBUTICN ON MEMBRANE 8 = V/c = §

giving values for B= V/c of about 9 and 20 respectively, From

Table 2.1 the minimum values of yt/v corresponding to 3= 10 and
20 are low by about 14 percent and 7 percent, but exist oaly in central
circles of radii 1/9th and 1/20th of the loading circle. The less the
initial stretching of a membrane (o1 string) the higher is the value of
B , for a given explosive, and hence the better is simulation.

To estimate the deflections which may exist while the load is
still acting on the structure the initial kinetic energy is equated to the
final plastic work, assuming the latter much greater than the elastic
strain-energy capacity of the membrane, If each element has a final
symmetric strain of ¢ , the yield streass is °y and the mezmbrane
depth is d, then the energy equation is approximately mv~ /2 = Zoyed.
Now m = od , and cy =z (g /p)l ¢ is the maximum wave velocily in
the membrane, so v = cy,ﬁ? and v/V =~/zc-/5y where By =2 V/cy .
For a strain of 4 percent and By = 9 the ratio v/V = 0,045 go that,
approximately, the deflection is y = 0.045 r where r is the radius
of the loading circle. The larger the value of B8 the smaller the
initial deflections and hen : the better the simulation.

18




Table 2.1
MEMBRANE —MAXIMUM AND MINIMUM VALUES OF yt/v

(Yt/v)max
B=Vie | _.2,.2 ¥e/V)nin
B> 1 =B7/B7-1) | gcg<
a=8
1,233 0.527
1. 042 0.751
10 1,010 0.86!
20 1.003 0. 926
50 1. 000 0. 969
100 " 0. 985
200 " 0.992
500 " 0. 997
1000 " 0. 998

2.4 CONCLUSIONS

It can be concluded from the results of the above analyses for
strings and membranes that, for good sirnulation of distributed
impulses with explosives, the detonation velocities V must be greater
than the wave velocities ¢ . The higher the velocity ratio V/c, the
better is the simulation. For both the string and membrane values of
V/c greater than 20 give very uniform 'initial"' velocity distributions
and, provided the required final plastic strains are not too large, gives
small "initial" displacements. Values of V/c greater than 20 are
certainly quite practical.

The actual uniformity of the initial velocity distribution can be
seen in Fig. 2.3(a) for the string and in Table 2,1 (with aid of

Figs. 2. 4(a) and 2, 5) for the membrane. Displacements of the string
and membrane acquired during loading may be estimated by the

19
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formulas y = Zexlsy and y = 4er/8y respectively where ¢ is the
final strain, x and r are the load positions, and ey = V/cy is the
maximum wave velocity,
The results in {2. 1] and [2.2] indicate that it is desirable to :
detonate explosives away from supports to minimize their influence
while the load is being applied.
[ ]
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3. DYNAMIC BUCKLING OF RECTANGULAR PLATES
IN SUSTAINED PLASTIC COMPRESSIVE FLOW

3.1 INTRODUCTION

Dynamic buckling during sustained plastic flow has been described
previously for cylindrical shells [ 3. 1] under inward radial impulse ard
for rods under axial impact [ 3.2]. In this section an analysis is pre-
sented for rectangular plates under sustained in-plane flow, and the
predicted wavelength is shown to be in reasonable agreement with

experimental results.
3.2 PRINCIPAL FEATURES OF THE PROBLEM

A simple rectangular plate, flat or nearly so, is made to flow
plastically for a short time by sufficiently large, uniiorm, in-plane
stress, with three.components 011+ 92 92 (Fig. 3.1). There are
non-zero plastic strain rates, related to the stress through the Prandtl-

Reuss equations ([ 3.3], p 39)
P N P - I’ P o
€31 01 €32 FAT5 4 €, =0, (.7)

elastic deformations being ignored. Primes denote deviatoric com-

ponents throughout.

g,
M
~On

FiG. 3.1 NOTATION
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While this in-plane flow is proceeding, there may also be small
flexural motion in the transverse (x3) direction, resulting in a plastically
buckled form. This flexure alters the strain rates, except cn the middle
surface., Butit is postulated that it does not cause reversal of stiain-
rate, so we are concerned with loading only, in the sense of plasticity
theory. This is the type of flexural buckling envisaged by Shanley [ 3. 4]
for the column, and considered for the plate under uniaxial compression
by Pearson [ 3.5].

In parficular the transverse motion of the plate introduces
differences between the strains, and strain rates, of a point on the
upper face of the plate and the point below it on the lower face. Then
the strain-increment vector of the flow rule is not the same for the two
points, and in general the directions will be different. The representa-
tive points on the appropriate current yield surfaces must then be such
that the normals are corresvondingly different, implying a stress
difference which can appear even if strain hardening is absent. This
can not occur for the one-dimensional stress of the column. If there
is no strain hardening, flexure of the column c=n occu.' witkout inducing
bending moment. In the plate the stress-differences imply bending }

moments and also, in general, twisting moments.

The strain rate for & lower-face point may be expressed by
P
ij . .
paraineter is )\ for the middle surface, but A+ AA for the lower-face
point and A - Ai for the upper-face point. With a similar notation for

stress, the Prandtl-Reuss equations for the lower face are

el + Aé% » and for the upper-face point by é% - Aéfj . The plastic

p op - N . ’ /

ij ij
and for the upper face are (3.2)
CLARIN A

(n - A)‘)(Oij - Aoij)
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We take these for the in-~plane directions only (i,j = 1,2), Eliminating
P

*. we have
e:lJ ha

.p - L] L] ’ ) ’ _ . . . P - ,
2/:\6:ij (\+ M‘)(Gij ! Acij) (\ Ak)(crij Aoij)
The difference quantities however are to be small, corresponding to
small flexure, which must prevail at least in the earlier stage of the

motion of a nearly flat plate. These relations will accordingly be

linearized to

.p = L ] ’ I [ ]
Aeij kAoiJ. + Uij AX

Thus the relations consist of

. - . ‘ ’ . ’

ae®. = A\pdl, +al AL (3.4)
22 22 " %2 , | '

. - : 1] 1 .

Aey, = )\Aoi2+ole)\ (3.5)

By elimination of A): » (3.3) and (3. 4) yield

aéP red .CH Ao,
S Ul S Vet G 3 (3. 6)
LR 922 %11 922

Adding (3.3) and (3. 4), we obtain a symmetric equatic.". Combining

this with (3.5) to eliminate A\ , we have

<P « P P ' ) '
Ae“ + Ae Ae . A)11+A022 A°12

, ’zz_ {2=>\(,+, -o,) (3.7)
911 %%2 %12 % * %2 12
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The unperturbed flow is regarded as given. This means that the

strain rates in (3. 1) are given, as well as the stress, and therefore

A is given. It will be evident that the effects of strain rates introduced

by some buckling deflection w(xl. Xy t) on strain-increment vector
directions will differ according as the original strain rate is large or
small. The original strain rate is therefore a necessary part of the

specification of the state from which buckling occurs.

t Now (3. 6) and (3. 7) provide two linear equations relating the
; unknown stress differences Ao'“ . Aa:,.z , Aol'z , to the strain-rate

. .P P P
differences At} s B85, Aéxz .

In the next section we obtain a third linear equation from the strain-
hardening law. The three equations will then play a part similar to that
of moment-curvature relations in elastic plate theory. Combination with
the equations of motion of the plate element then results in a differential

i equation for the deflection w alone,

Experimental results reported later in this paper, and interpreted
by means of the present theory, ar. all such that the observable defor-
mation is predominantly plagtic. For thic reason, and to minimize
complications, we now assume that elastic deformation can be entirely
neglected. Then the superscript p canbe dropped in (3. 1) through
(3.7), and we can further write

2

. _ h 3w . _ h 3w . _ h 3%
depycrz TR Mpttr T Mt crwmow; (08
axl ax?_ 1772

If the plate is not initially fiat, the initial ordinate of the mid«
l surface will be denoted by w(‘(xi) , and then w means the observable
deftection, the additional ordinate, at time ¢ . '

+

s bt st
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3.3 ADAPTATION OF A STRAIN-HARDENING LAW

The strain-hardening law to be employed here is

o = H(fde) (3.9)

/3, L2 o

define the positive '"equivalent stress'' and '"equivalent strain increment"
correspending to [ 3.3] p 26 Eq. (14), and p 30 Eq. (16), except that

where

the present notation omits bars. The integral in (3.8) is path«~dependent,
and the strain paths are not the same for different elements of material

on the same thickness line.

In the present problem we regard the transverse shear strains
€330 €3, 28 negligibly emall, supposing that thickness lines remain
normal to the middie surface and straight, as commonly done in thin

. plate and shell theory. Then, in view of plastic incompressibility,

we can write from the second cf (3. 10),

(de)z = %[(de“)2 + (cle:z)Z +de, - de, + (delz)z} (3. 11)

The differentials in (3.10) are now taken specifically as those pertinent

to the midsurface, and occurring in a tirme increment dt .
For the lower surface the correspcnding strain increments are

h . h. h .
dsll'f"‘lldt" dtzz'zuzzdt . dclz -lezdt (3.12)

g“’« : where

2 a"'&/ax’; T a"-{v/axg Ryt a’-\;/axlax

> (3.13)

%11
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Writing de
surface, we may evaluate (de¢ l,) from (3. 11) by introducing the

L for the equivalent strain increment at the lower
2

replacements (3, 12).

We have already, in deriving (3.3), (3.4) and (3. 5), treated the
difference terms introduced by the flexure as small in comparison with
the terms of the dominating flow. Correspondingly in (3. 12) the flexural
w terms will be supposed small compared with the midsurface terms.
Then the squares and products from (3. 12) can be linearized with respect
to w,. We find

Z - z 4 L] l‘ . L] l . L]
(de )" = (de)” - B-hdt[de“(x“ tyiys) +dey,(xy, tky,) Hde, %1,]
(3.14)

For the upper surface (dt:u)2 is obtained by changing the - to +.

We apply the law (3. 9) separately to the lower and the upper

surfaces, and wish to cbtain the difference

24¢ =f<:lc-:L -fdeu (3.15)

which definea A¢. From (3.14) and the companion expression for
2
(dc“) , we have

2 2
(deL) » (deu) (deL +de“)(deL-de“)

(3. 16)

'ghdt[deu(;‘u*é‘;‘zz) ool

But

deL +d¢:u = 2de (3.17)
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Introducing this in (3.16), and converting to rates by inserting dt as

required, we find

de, -de
u

4 ) 1. . . 1. .

and now (3.15) can be written as
t

2. fl.. .. 1, .. 1. _
'?hf;' (6,00 +5Rp0) #8550, +3R ) + & i ldt (3.19)
(o]

i

Ae

This becomes much simpler if the ratios é“/é , ézz/é , élz/é , per-
taining to the midsurface flow, are independent of t throughout the

motion. In general the Levy-Mises relations,to which (3. 1) now reduce,

imply
€.. 3¢/,
R TJ-" (3.20)
e (o}

We now suppose that the imposed stress components %11 %2
are maintained in constant ratio throughout the motion. This implies
constancy of the right-hand side of {(3.20). Then the ratios é“/é etc.
in (3. 19) are in fact constants, and the integration can be effected by

removing the dots on the x's . Thus (3.19) becomes

- 1 1
Ae = 'h[a(nll"'znzz) + B(xzz"'znll)"'YKIZ} (3-21)
where . , e ' . '
i 2e ), 9 2e,, _ %2 ) 2¢y, %
Q= = = == B= — 5 YE /=5
3e 3e 3e
(3.22)

and
“Z 2 3 2
o} -'\/c“ + 0y, - 011022+2-ch) (3.23)
29
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The quantity 2Ac , expressed by (3.21) in terms of w , shows
: how much further along the equivalent-stress—equivalent-strain curve
f (3. 9) the point for the lower surface is in advance of the point for the
upper surface. The difference in the values of o0 for the two surfaces

is given by the differential form of (3.9),

200 = 2H' Ae (3.24)

and we shal. take H' to be constant,

Again with reference to the experimental results we seek to
explain, and for brevity, we now restrict the analysis to the case
012 © 0 . Then the first of (3, 10) yields

20 AC = (Za11 - 022)A°11 + (Zazz - cJ“)Ao22 (3.25)

TR S et RS R 21

Now (3.24) becomes, with (3.25) and (3.21)

: - ‘ 1
Lo (20))-05,)801) + (20,; -0,)80,, = -2H chlaln); +5%,,)
(3.26)
1
+Bluga tyuyy))

This, and (3.6) (3.7), form a aet of three equations, which are linear

relations between the stress diiferences AO“ ’ Aoaz ’ AolZ , and the

derivatives of w [in view of (3.8)].

Since we contemplate small stress differences occupying only a
small segment of the line represented by (3.9), and there is no un-
loading, the variation of stress through the thickness may be taken as
linear. Then the moments per unit run M;,, M,,, M,, are given
by

2

2 - =
= 6M,, . h°Ao, = 6M), (3.27)

2 h™ Ao

h“Ac,, = 6M

| S 22

11

IR AR R S s W

R A e i




e O T 0

M

= R 1 T R

We rewrite (3.6), (3.7)and (3.26) using thes2, and (3.8). Then

(3. 6) becomes

n .
M,, = - & (3. 28)
12 eriat
(3.7) becomes
b . .
0,2M ) =9 My, = - E‘{“Z"zz“’u)"n - (20)) - 055)%5,1  (3.29)

and (3.26) becomes
(20, =0 M, | + (20,,-0, M. = ~sH'oh [a(n, +ar.,) +B(x,,+ax, )]
117221 22 V117722 k3 117272 2272711

(3.30)

In (3.30) we can put H' = 0 for a perfectly plastic material, and still ,
obtain non-zero Mll , M22 from (3.29) and (3.30). These represent
the stress differences induced by movement of the stress points on the
now unchanging yield surface, referred to in Section 3.1, and depending

on the curvature rates.

The solutions of (3.29), (3.30), for M M,,, are

. ; (20,,-0,,)
a1 . . . 22°°1n
M ) --2“4-'{7[(“22“’11)"“ '(20“.022)“"‘2][(‘0 ~052)
2z o I_“ 11 "22
{3,31)
; o

H'N N 1, 11

B [u(.‘“+-2-x22) + 8ny, +y)i 0,

2

We shall 1efer to the terms of the lst line, having the factor 1/,
as the "directional” moments, and to the terms of the 2nd line, pro-

portional to H', as the strain-hardening momen:s.
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3.4 EQUATIONS Of MOTION

4
!

A piate element dx dy is subjected to uriforrn stress Oyp %32

together vith the raoments My, MZZ ’ MlZ , and transverse shear

f forces per unit run Ql . QZ necessarily associated wich these, We .
; neglect rotary inertia. The equations of motion take the weli-known
: forms of plate thecry
29, + e’ + 0 hazw + 0 l-a?"-"- \%hi’f“'
I¥x, = Ux, 11 2 22" 7Z T ¥ )3
§ 1 P axl ‘ 3x2 3
| Q. - My, M My M,
§ | 1 axl sz _ 2 sz, axl» _
| .
- where p means density.
L X :
b By elimination of Q; . Q,
32M azM 32{"{ 52(W +w ) : az‘fw +w )} 22 :
ll+z 12 Z?..oh % 4 0. h — o:h_é_}» .
—2 3%, ax T T YTy R T
' s
: 13.32) R
, In this we now use {1.31}) for M“ . MZZ" {3.28) icr MiZ , and convert
it to a differential equation for w alone to obtain
: .
h ) 2%2% 2 e . Pt %z2 a9 %)% 0yy)
e A e el B R 5
241 &&-‘3311 Btaxz ¢
-4 as" +hZH\_l}i§i(a¢ie}§:! Q?j-i(ﬁ# 13)34"
I J \ T &g
1772 1 2
2 _ 2
4 < 4 2w s ) 3w+ §
1l i 22 ) 3 wx ! o o .
*[?(S*IQ)"?‘{Q*ES)} ;‘-Z"““_ 'c!l———g;z-m-gzz ;"-..z...,‘..
sﬂx < U l ‘ ,axa :;
2
N
; < -3 (3.33)
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All the coefficients are constants, except for A in the first
line, As we have obsarved in Section 3.1, ) must be specified, and
this is equivalent to ¢ jecifying imposed strain rates é“ ' éZZ as
well as ilnposed <tresses T OZZ . Since we have postulated slight
strain hardening, it is reasonable to treat 0“ + G, as constant
throughout the flow. We now postulate farther that the imposed strain
rates are to be constant, and therefore X\ will also be constant. Now
(3.32) is a linear equation with constant c~efficients. The uolution for
a rectangular plate with simply supported edges is examined in

Section 3.5 below,

Since from (3.22)

c 2
11 _ 22
= = 2Q‘+ 8 . -.3_. = a+ 2R

we can rewrte {3.33) as

N P TS DI STz 2w 2o, 0 NZomsno. )
S ’ - Ty -
241 o 2t 2x o 3t ax; o w2

2 2
-] _;_ﬁasw i} +72._h£“' ....2...0” _..4.34“' ;222 -—-434“‘ Lg%z ¥
3t ax’ 3» a % ;I Ax ﬁz 3"2 53‘3
193 ) 1 2 % 1 9%2 )
2 2
32 32, . P ; ¥ w o -
S R S ¥ Sy SRRy 4 ) B ¥ Sy 2
Bxl éxz ot 3;.1 2

U the compressive flow and the buckling are occurring siowiy, the
inertia term may be negligible. But it is not evident that the {irst line
of terme may be dropped, since \ appears in the denominator and is
small for a small flow rate. The magnitudes of the time derivatives

of w will evidenlly depend on the initial displacement and velocaty,

33




3.5 THE SIMPLY SUPPORTED RECTANGULAR PLATE

We take c“ =0 022 = 0, corresponding to uniaxial

compreseive flow, Then ¢ = Oy1- The differential equation (3. 34)

reduces to
B P, e P
24\ atale 2 3x; 3t ax’ dxs
1,2 Bzw 52 32' azw
tphH G+t o, =5 + p 5 = -0, —x (3. 35)
Bxl axl at” axl
If
mmx, nmx,
w_ = LZa nsm—-—sin—g-— (3.38)
we may take
mimx X, .
w = LL Wmn(t)sm = gin 5 (3.37)

Thir makes Mll , M22 in (3.31) zero at the edges X, = 0, a; X, = 0, b,

8o the edges are simply supported, Then (3.25) requires

n.2,nm2

;—2—[( )t s o30% + 8202 (A% ) W
TR R o Wy ¢ 9 = a0

For suitubly limited initial deflection v, and velocity w (xl. xz » 0)

the time derivatives of wmn can be vary small. These would be the
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circumstances of a "static'' test with 0'0 increasing rather slowly to a

critical value. The result

%®mn
w = : 3.3
mn ) h-’-H:(mn )Zw : (3.39)
12 a ' Vo

then indicates a critical compressive stress

2 mr 2

_ 1 ‘
Co = —rzh H (T) (3. 40)
it is remarkable that this is independent of b/n, the half-wavelength
in the direction transverse to the load. For m =1 it is the simple

tangent modulus formula,

The same critical condition is obtained from (3. 35) if we take
w in the form

mrx
w = W_ sin (3.41)

4

i.e., independent of X, -

Since Gyo = 0, the value of M22 given by (3. 30) consgists of the
directional part only, and is thereforec very small in the "static' test,
for (3, 37) or for (3.41).

Returning to the dynamical problem of {he simply supported plate
with the deflection (3. 36), we suppose that the imposed strain rate
éll is large compared with any a«.ditional strain rates introduced bv
w , Then the directional moments in (3. 31) could be neglected rom-
pared with the strain-hardening moments. The first line o{ (3, 34), and

that of (3, 38), disappear.
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Considering an imposed PN much larger than the statical

critical value (3.39), we shall have (3.38} in the form

X 2 o)
W - (B o - el (BT =-5‘-’amn(-’%’-’)2 (3. 42)

mn p' a o a mn

It is convenient now to change to a dimensionless deflection co-
efficient W on.2 dimensionless time T, and to introduce a dimension-

less constant 82 , defined by

2

- wmn r = TTzh H' .t 2 _ lzcoa (3.43)
Wmn - 1.-— ? - —2‘ Tz—'p » 8 - _z—zl .
a mHh
Then (3.42) becomes
dzw a
mn 2,2 2 _.2_2%mn

—:1:2—— m (8 -m )wmn =sm —— (3. 44)

For m < s the solution will contain hyperbolic functions of time

which may becume large during the motion.

For a plate initially perfectly flat we have a n* 0, and any

deflection is due to initial lateral velocity. Then if

1 mnx, nmx,,
w(xl, Xy 0)=0 , E—wT(xl,xz,O) v, ZZan in— sin -5 (3. 45)
the result obtained after integrating (3. 44) is
) ® r mmx mnx
wix ,x,,t)=v L I —S sinhp T sin « sin
h 1’72 °Ypn=1 mel m b
® r mmnx
+ L I = Smnsin P,T" sin . sm—-s (3.46)
n=l m=z=l *m
-
where
pm >0 , an = mz(uz-mz)l , r<s<r+1l {3.47)
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This shows that the series for the deflection at time t is obtaineu from
the series in {3, 45) for the initial velocity by applying tc each coefficient
a magnification factor (but for a2 constant) which is either p;nl sinh P,
or p;nl sin PT . the former bzeing potentially the greater. Examining
it further we observe that if s~ is suitably large compared with unity,
pri as a function of m will be small for m =1 and for m close

to s (i.e,, m =r), but will have a maximum at m = s[v/'Z'-. with the
value P max - 32/2 . The hyperbolic magnification factor itself, as

a function cf m , also has a maximum for the same ‘m , and this

maximum is

825 (3. 48)

D] -

-1, 2,
(pm sinh pm‘r)max = :Z sinh-

This can become very large as T increases. If it does, there is
conspicuous magnification of harmonics having m in the neighborhocod
of SVZ , regardless of n.

To illustrate the magnitudes involved, we consider an aluminum

alloy with
_ 4 . . 5 .
0,=2.5%10" psi , H'=1.3x 10> psi (3. 49)
\\ .
Then from (3. 43)
2
2 . 1 ,a o= sh_. 2 m =2 = o1 _. 2 (35
£ T3 7T - Z207 R 17 2,92 H '
h ﬂ

.Evidently there are hyperbolic terms in (3.46) when a/h is
greater than 2,07 {i.e., s >1). Much larger values of a/h can allow
comspicuous magnification of harmonics if (3.48) can bacome much
larger than unitv. This of course depends on the duration, the range
of 7 in which the compressive flow stress o, is maintained and no
strain-rate reversal has yet occurred, The most magnified harmonic
has m close to m, as givenin (3.50), and the corresponding hali-
wavelength is

a

= 2.94h (3.51)
m)
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The bar problem analogous to the present plate problem was
treated earlier [3.2]. The most magnified wavelength for a bar of
rectangular section of thickneses h is the same as (3.51). Thus, the
hinges on the boundary conditions do'not affect the wavelength,

If the initial velocity is zero, any deflection is due to initial
deflection W, Taking v, in the form (3.36), we have again (3. 42)
for’ wmn in {3.386), or equivalently (3. 44) for W on in (3.43), The

appropriate golution is now

2 ; ; 2 mn [cosh muix nmx,

0 p_ 7 -1}sin sin (3.52)
m=. nz=l s -m cos m a b

w(xl. xz.t) =8

where cosh is read for m <s, cos for m>s .

The magnification factor applicable to the mn term of w_ is

(o]
now
2
~ gy {808h P71 (3.53)
8 «~m .

Thia factor has occurred previously in the treatment of the
bar [3.2]. Its discussion is repeated here for convenience, Supposing
that 8 is so large that there are several hyperbolic terms, we consider

-
{3.53) as a function of m® . It has a maximum where

2 coshp_1-1
8 - ] = L m (3 54)
Zmz ) P,T sinh P,T :

Consgpicuous magnification depends on cosh P,T becoming mach
larger than unity, But in this case sinh PT has an approximately
equal value. Replacing the right-hand side of (3.54) by -l/pm'.r . we
may then observe that P, T must be vonsiderably larger than unity,z
80 l/pm'r is small, C?::nuequently (3.54) will require a valge of m
slightly greater than s /2 . Taking 8 /2 as an approximation, the
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greatest magnification fu~t~r (3.53) becomes approximately 2 cosh 1/2 sz-r.
As was shown in [ 3. 2] , this in fact becomes large in durations of the

order of 100usec,

Since the magnification factor is greatesst for m close to s/,\/?: ,
the most magnified wavelength is the same as in the case of initial

velocity perturbations.
3.6 COMPARISON WITH EXPERIMENT

Experiments were undertaken in which square tubes of aluminum
(6063-T5) were projected end-on against a massive steel plate, Each
side of the tube behaved as a plate in uniaxial compression. To facili-
tate acceleration of the tubes, they were mounted on round rods which
could be fired from a standard rifle. Several specimens are shown in
Figs. 3.2 to 3.9. As indicated in the figures, several combinations

of boundary conditions were used.

The half-wavelengths from ‘the specimens of Figs. 3.2 to 3.9
are listed in Tables 3.1 - 3,4, The 1/16-inch-thick plates (Tables

oP- 4999 22

FIG. 3.2 1/16~INCH WALL BY 5/8~INCH-SQUARE ALUMINUM TUBING BUCKLED
'BY AX'AL IMPACT WITH A MASSIVE STEEL PLATE
AT THE INUICATED VELOCITIES
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3.1 -~ 3.3) show a variation in half-wavelength with houndary condition
from 0.26 inch for 1/2-inch-wide plates, hinged or clamped on the
long edges (depending on the response of the adjoining plates), to 0. 61
inch for plates which are free on the long edges. As indicated by the
large buckles in the second and third specimens of Fig. 3.2, the wave-
length does not appear to depend significantly on whether the long edge
is hinged or clamped. The 1/8-inch-thick plates were tested with
hinged or clamped boundaries only on the long edges and show a half-
wavelength of about 0. 45 inch. From (3. 43) the theoretical half-

wavelength N\ corresponding to the most magnified harmonic m, = gﬁ

g
k:;— =Jg—'\/-%{.h (3.55)
o]

is

-

* 144 (LAC  3)

LGP 4999 2y

FIG. 3.3 1/16-INCH WALL BY 7/8-iNCH-SQUARE ALUMINUM TUBING BUCKLED
BY AXIAL IMPACT WITH A MASSIVE STEEL PLATE
AT THE INDICATED VELOCITIES
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107 | ' (2¢sC-2)

GP-4999 24

FIG. 3.4 1/16-IRCH WALL BY 5/8-INCH~SQUARE ALUMINUM TUBING,
WiTH TWO OPPOSITE CORNERS CUT, BUCKLED BY AXIAL IMPACT
WiTH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES

(" l

118 ft/sec (2¢sC-1)

123 {2Cs5-2) 4P 4998 2%

FIG. 3.5 1/16~INCH WALL BY 7/8-INCH-SQUARE ALUMINUM TUBING,
WITH TWO OPPOSITE CORNERS CUT, BUCKLED 3Y AXIAL IMPAZT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES

4}
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59 #1/sec (4CSC-3)

\ {4C5C -2)

GP-4399 26

FIG. 3.6 1/16~INCH WALL BY 5/8-INCH-SQUARE ALUMINUM TUBING,
WITH FOUR CORNERS CUT, BUCKLED BY AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELOCITIES
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ICO ft/sec {4CSC-3)

(4CSC -2)

199

P -49M-2?

FI1G. 3.7 1716-INCH WALL BY 7 8-INCH-SQUARE ALUMINUM TUBING,
WITH FOUR CORNERS CUT, BUCKLED BY AXIAL IMPACT
WITH A MASSIVE STEEL PLATE AT THE INDICATED VELQCITIES
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FiG. 3.8

398 1/sec (sac - 3

LB AdEy 28

1 8-INCH WALL BY 3 4-INCH-SQUARE ALUMINUM TUBING BUCKLED

BY AXIAL IMPACT WITH ‘A MASSIVE STEEL PLATE
AT THE INDICATED VELOCITIES
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OBSERVED HAL

Vable

3.1

F-WAVFLENGTHS FOR {/16-INCH-THICK PLA 'ES

e , _ .
-
falf-Wavelength (inci
Plate lrnpac!i Axial \ ' Ha avelength {inch) —1 overall
Sprcimen width | Velaocity 1 Shortening | Side Y A A ) N Y N T e
tineh) | (ft/sec) () ; M 2t 73 e 5 I R M| Average
P— J —
SAC-) 1/2 199 10 [ ! L2415 22 Lt , : | | Y
(Fig. 3.2) | z 3.2yl 303 ‘ ‘ ( D30
b 2y lLav 19| 1913 19 L24 a8 24 01! 22
.4 J32 | .31 | .45 .25 .35 .26 5 ! P32 .26
SAC-2 L2 300 S S NPT B TR VO TS I YO OF S A TN S S N R ¥
(Fig. 1.2) P2 22y | L33t LeriLas | L9 L300 L21, i ! L, 26
Lo L25 (.32 W31 ] L2723y L2l ) | I i | .27
I a 26 L3030 a3 |28 19 .20 19 .22 | .25 .26
SAC-1 1/2 400 36 1 L3001 .32 ! .31
{Fig 3.2) 2 230 .31 ; .30
3 .28 ) .35 .27 ] .24 | .44 , | 32
4 Lol .32 | | ; .32 L3
! LAC-1 3/4 184 7 1 L3237 036 ] 400 .37 L34 32 Lol
(Fig. 3.3) 2 .38 | .41 .29 (.37 .28 .36
3 .43 | .52 .48
4 (36 7 .41 | .41 ] .39 (.45 .33 | .39 .38
LAC-2 34 310 16 1 46| .47 ] .33 ] 36| .48 | .4l | A2
(F1g. Y. %) 2 .42 | .46 .37 .40 | .46 | 40} .35 .41
3 .39 .39 .34 .42 ] .43 . .39
4 47 | .44 | .42 | .42 0 .49 a4 .Y .43 .41
LAC-3 3/4 344 30 1 43 .37 .32 .37 | .38 .31 .52 .34 I8
(Fig. .1) 2 3| .38 .a4 ) 44 ] 48] 32| 24 227 L35 .36
3 .52 1,37 .47 ] .40 | .34 | .25 .35 .34 ] 38
4 430,360 .32 .45 | .29 300 (27 287 .35 .34 .36 J
Table 3.2
OBSERVED HALF-WAVELENGTHS FOR 1/16-INCH-THICK PLATES
WITH ONE FREE EDGE
Plate Impact Axial . Half -Wavelength (inch) _J overall
Specimen | Width | Velocity | Shortening | Side Ty N N T
tinchy | (ft/sec) %) Mol et M s e | N [Averese
2Cse-l 12 82 ¢ i 46 | .50 ] .52 .49
(Fig. 3.4 2 (48 | .42 |.44 ] .48 .45
3 46 | .34 ] .45 .42
4 J36 .32 .40 .39 .37 .43
2CSC-2 1/2 107 1 47 .47 {38 .57 .47
(Fig. 3.4) 2 .49 | .41 | .42 .37 .41 .42
3 311033 .4t L35 .40 .16
4 L4l les (.24 .33 40 (.37 .34 .39
2056-1 34 18 4 | 45 |43 .44
(Fig. 3.5) 2 .47 | 44 .46
3 .60 | .67 | .49 .59
4 51 ) .48 50 .50
LCSC-) 34 123 ' 1 .41 | .45 . 16
(Fig. 3.5) e 47 a2 e .43
3 .43 | .45 | .42 | .51 .45
j 4 58 (.54 [ .59 .87 .48
- e - - — -
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Table 3.3

OBSERVED HALF-WAVELENGTHS FOR 1/16-INCH-THICK PLATES
WITH TWO FREE EDG'3

- - — r —
Plate Impact Axial Half-Wavelength (inch) overall
Specimen | Width | Velocity | Shortening | Side . : ! ; H RS
{inch) | (ft/uec) %) MpooRg o mg N R Mg DAy LR ] Average
! | !
4CSC-3 ~1/2 59 ! 1 .57 ! .53 | .65 [ .58
(Fig. 3.6) 2 61!, 89 ' .65
3 L6711 ,87 | .81 .58
4 L7064 |61 ] .60 , 64 .61
4CSC-3 -~ 3/4 100 3 1 c38 152 |67 ],43 .56 .51
(Fig, 3. 7) 2 .48 | .62 | .61 | .54 56
3 L350 .34 | ,35 | .66 | .65 .47
4 .53!.51 .51 ] .41 .50 .51
4C3C-2 ~3/4 115 3 1 .60, .59 | ,49 | ,60. .57
(Fig. 3.7) 2 L5010 .40 .45 | .44 .45
3 .58 | .61 .43 .39 |.42 .49
4 L5801 .42 | .43 | .45 |.38 ;.35 .50 .43 .48
Table 3.4
OBSERVED HALF-WAVELENGTHS FOR 1/8-INCH-THICK PLATES
]
Plate | Impact Axial | ] Half-Wavelengtk (inch) Y verall
Specimen | Width | Velocity | Shortening | Side ; iy .
inch) | (ft/sec) (%) Moprz MM s i re M R ihg M| Average
1 i
P
SAC-1 /2 9 : | |
(Fig. 3.8) ' | i
SAC-2 1/2 23 1 450 97 .54 .45 } .47 .40 .38, ; .45
(Fig. 3.8) 2 .35 .45 | .44 | .40 | .32 i .39
3 300,28 (.54 | .49 .40 .43} 44 ;.34 .40
4 L350 .45 | .49 | .38 | .42 (.38 .32 .3 .39 .41
SAC-3 12 578 29 1 49 [ .44 | ,42 | .43 .46 .35 | .28 | .41
(Fig. 3.8) 2 .55 ] .37 1,45 | ,24 |.35 .20 .28 .35
3 L3V .42 .42 .38 .34 .23 . 240,22 (.36 .32
4 .41 ) .48 (.38 .52 .59 (.30 .45 .38
LAC-1 3/4 139 2
(Fig. 3.9)
LAC-3 3/4 218 b
(Fig. 3.9)
LAC-2 3/4 269 L]
(Fig. 3.9}
LAC-4 3/4 377 15 1 .34 .34
(Fig. 3.9) 2 36| .34 ] ,31 ! e .36
3 ,36 L 36
4 42 | .43 .42 .37
LAZ-Y 3/4 460 20 | .49 | .49 49
{Fig. 3.9) 2 cde | 40 | .62 | .47 (.38 .46
3 Lad L, 48 LY
; i . 4 sos 1,53 1,411 39 .49 A9
S A Sy UY SRR SR IR DU ORI DUUVOL R S S b
47




As indicated in Fig, 3. 10, the factor /H '/co varies considerably
from 1 to 10 percent strain, decreasing as strain increases. Thus,
(3.55) indicates that the half-wavelength should decreasc as strain
increases, This expectation is borne out by the data, as may be seen
by comparing Tables 3.1 -~ 3.3. The effect of freeing the long edges
appears to be to increase the instability so that buckiing occurs at

lower axial strains.

wor—T——T T T T T T T T T 7T

30,600

| | | i ] | | | | |

) 2 . 6 s 10 12
TRUE STRAIN, ¢

FIG. 3.10 STRESS-STRAIN CURVE FOR TUBING MATERIAL (Aluminum 6063~T5)
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In Table 3,5 theoretical half-wavelengths are given for values
of H’/oo corresponding to strains in the region of interest, For
the 1/16-inch-thick plates the predicted half-wavelengths for strains
of 1 and 5 percent are 0.26 and 0. 14 inch. The observed half-
wavelengths vary from 0,26 to 0, 61 inch. The difference is attributed
to the effects of early elastic deformations on the subsequent plastic
deformation [ 3.4]. For the 1/8-inch-thick plates the predicted half-
wavelengths for strains of 1, 5, and 10 percent are 0.52, 0.27, and
0.19 inch. The observed half-wavelengths (Table 3, 4) fall within the

values for 1 and 5 percent strain.

The agreement between theoretical and experimental wavelengths
is reasonable, indicating that the theory describes the mechanics
fairly well. The largest factor yet to be accounted for in the theory is

the variation in H'/ 9, with strain,

Table 3,5

CALCULATED HALF-WAVELENGTHS

Assumed
h Buckling % A A
(inch) Strain }'{‘, h (inch)
(%) :
0. 062 1 0.096 | 4.13 | 0.26
5 0,35 | 2.17 | 0.14
0. 125 1 0.096 | 4.13 [ 0.52
5 0.35 | 2,17 | 0.27
10 0. 69 1.54 [ 0.19
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4. DYNAMIC BUCKLING OF A THIN CYLINDRICAL SHELL
UNDER AXIAL IMPACT

4.1 INTRODUCTION

Experimental investigafions by Coppa [4.1] and others have
shown that thin cylindrical shells subjected to axial impact can buclkle
dynamically into the familiar diamond pattern of large deflection static
buckling, The diamonds in the dynamically buckled shells, however, are
smaller than in the static pattern because higher modes respond faster
than lower ones and soon predominate the motion. Dynamic buckling
into very high-order modes (short wavelength) has also been observed
in cylindrical shells under impulsive radial pressure [4.2] and in thin
bars under axial impact [4. 3]. In theoe laiier problen.s, tlic veiy sheot
wavelengths can be attributed directly to the very high thrusts compared
to those in static buckling. In cylindrical shells under dynamic axial
thrust, however, the thrust does not have to be greater than the classical
static buckling load to produce wavelengths shorter than those observed
in large deflection static buckling. Using high-speed photography of a
shell buckling elastically under static thrust, Almroth, Holmes, and
Brush [ 4. 4] showed that the ghell initially deformed into diamonds of
roughly half the size of those in the final buckled shape. In other experi-
ments, by placing a rigid mandrel inside the shell to limit the amplitude
of post-buckling deformation, they were able to keep the shell buckled
in the shorter wavelength pattern, Thus, in a cylindrical shell under
dynamic axial thrust, the modes of deformation can be expected to depend
in general upon the amplitude of deformation as well as upon the magni-
tude of the thrust.
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These complicationsa in the cylindrical shell have led theoretical
investigations of dynamic buckling toward a large deflection theory as
was found to be required for static buckling. The general procedure
has been to assume axial and circumferential buckle wavelengths and to
numerically integrate equations derived from large deflection shell
theory. The coefficients of a few terms giving roughly the diamond
buckle shape are taken as generalized coordinates and the Galerkin pro-
cedure is used to derive equations governing these coefficients. Buckling
is said to occur when the deflections increase abruptly with load or end
shortening. The procedure is repeated over a range of axial and cir-
cumferential wavelengths to find the combination that gives the lowest
buckling load. Coppa and Nash [4.5)used a twodegree -cf-freedom system,
taking the end shortening to increase linearly with time. Roth and
I’..‘.::::-.cr{ 4 &}ug:; 2 foyr Amgrea-of -freedom system and a step pressure,

No comparison of these theories with experiment was made.

The drawback of the above procedure is that two of the essential
unknowns of the problem, the axial and circumferential wavelengths of
the buckles, must be assumed at the outset of the integration. To
determine the wavelengths into which the shell actually buckles, the
procedure must be repeated over and over for many combinations of
axial and circumferential wavelengths. For buckling in which the impact
streas is greater than the static classical buckling stress, this short-
coming is overcome in the present paper by using linear theory to study
the wave selection process in the early motion while the leflections are
still small. This allows application of the analytical procedure used in
the beamn under axial impsct [ 4. 3], The buckled form is not specified
a priori; instead the motion is expanded into the linear vibration modes
of the shell so that it is free to deform into its own '"preferred' shape.
Initial imperfections are taken in the form of white noise and a statistical
analyses gives the expected values for the axial and circumferential
wavelengths. If the initial imperfections are sufficiently small, the ratio
of amplitudes of the preferred modes to the amplitudes of the imperfec~
tions can become quite large within the applicability of smali deflection
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theory, and this dominance of the preferred linear wavelengths could

carry over into the large deflection motion.

Experiments are presented which give final buckled forms very
cloge to those predicted by the theory. Very high-speed motion pictures
(240, 000 frames per sec) show buckles forming during the elastic and
plastic motion and demonstrate that the time scale of the buckle for-
mation also agrees with the theory. The axial wavelengths are much

shorter than in static buckling and the observed aspect ratios (circum-

ferential to axial) are much larger, averaging about 3 compared to 1 in
static buckling. This varied considerably and in many experiments

nearly symmetric (very large aspect ratio} buckling was observed,
4.2 RESPONSE Or THE NORMAL MODES

In the experiments, cylindrical shells are impacted at one end by

a massive ring which sends a step axial stress wave down the shell,

The shell buckles before any signa! is received from the opposite (free)
end so that in the theory the shell is taken arbitrarily long. Also, the
thrust is assumed uniform throughout the length of the shell, thus neglec:-
ing any effects of the moving axial stress front. This was showntobe a
reasonable assumption for the axially impacted strip [ 4.3], and appears
to be valid here also, since as shown below, the axial wavelengths and
formation times of the buckles in the strip and cylinder are quite similar,
Thus, we consider a long, thin cylindrical shell subjected to a suddenly
applied constant compressive force.

To study the small early displacements, it is cufficient to use a
small deflection linear theory. It can be further shown that simplified

- . o]
Donnell-type equations give satisfactory accuracy for the present problem,

E‘E more complete equations, such as givenin [ 4. 8}, are used,tke final
equation (12) here results if terms multiplying the axial strain « = N/Eh
and terms containing (h/a) are omitted as small compared to terms
without these smail multipliers.
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Denoting time by t and axial force per unit arc length by N, and

i e s i

taking, as shown in Fig. 4.1, x and y to be the axial and circumferential

M« NUMBER OF AXIAL HALF-WAVES

N » NUMBER OF CIRCUMFERENTIAL WAVES b
Ob- 4999 g
FIG. 4.1 COORDINATES AND SHELL NOMENCLATURE §
coordinates, and w to be the radiaily inward displacement measured ‘
from the initial perturbed displacement W these equations become g
2 2 2 ]
4 3 . . ¥w hAF

DY w ¢+ N-——z(wéw)+pn -_—-—z=0 (4. 1)
dx © ;;2' A ; H
2
4 E 0w ks
VF + ry -;-2 s 0 (4. 2) {

where F is Afiry's stress function for mid-surface stresses produced

by the buckling, a is the sheil radius, h is the thickness, ¢ is the
density . D = Eh’llz (l-vz) is the flexural stiffness and V‘ is the
ovperator (ézlhs’z + éz/byz)z. These are equations {3) and {4) from
[ 4. 7] with terms appropriate to the present problem retained.
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Using non-dimensional variables

- N N
.: - X — , £e Y | o = ——— t (“}. 3)
D o D hD
equations {4. 1) and (4.2) become
2 2
4 3 . h C¢F _
‘VW+;'Z'(W+“O) A R 7 G 0 (4. 4)
-4 ED Bzw
VF o+ ...a_.N... —— = 0 (4.5)

where the operator V4 is now (az/agz + E;Z/Brz)z ., and () = 3/3-.

To simplify the mathematics, the shell will be considered simply
supported. The edge condition at the impacted end »f the shells in the
experiments is more clogely approximated by a clamped boundary, but
the experiments indicate that this boundary condition does nut signifi-
cantly affect the buckling. The conditions of simple support are satisfied
by

@ o .
rF . = ' ~) si * i
w (:‘o T ) Z Z wmﬂ‘ ) sln ﬂm; gn Snf . 4, 6’
m=] n=l :
¥ -, % S =) 8i 3 in & » .
F{. », 1) an( ) 8in 3mg__am n (4. 7)
m=] n=!
where
. m= D . = 0D
m T L 4N Tm 3 j;‘- (4. #)

and L is the length of the shell. The initial displacement w, is also

expanded into a Fourier series:

w (. ") = i i a sin g Teinf - {(4.9)
) mn m n
m=1 n=l
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Equation (4. 7) is now substituted into (4.5) and the result is substituted
with (4. 6) into (4. 4) to give the following equation for the amplitudes
w of the normal modes. '

mn

4
22 _ 2 , EDh %m

-2 2
W +[la +8)° -a + 5= ]w__ =a%a (4.10)
a'N" (o +8")

mn mn m mn
In the limit as L —a ¢ , o beccmes a continuous variable and, for
convenience, Bn will also be treated as a continuous variable so that

in the following Wmn('r) is replaced by W(a, B, 7} and the subscripts
on o and B are dropped. Noting further that

EDh _ 1, 7ct2
a N 1'%
where
E h
o = - (4.11)
cl 5— a
Vo348
is the classical static buckling stress, (4.10) can be written
LX) 2
g +tk{a, Blg = a (4. 12)
where
a 4
k(a.8)=(a2+62)z-az+;i-( :{’)z zo.zz (4.13)
(a"+B")
and

gla, B, 7) = Eé%c;—'—ea—'f—) \ (4. 14)

is the amplification function or "filter" characteristic of the shell under

a given axial stress o = N/h.
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The solution to (4. 12) subject to the initial conditions g{a, B8, 0) =
é(ap B, 0)" 0 is

”
. a cosh p7 .
g(a. B, T) —m)l-COBPT (4. 15}

where

1/2
P = lk(a » B )l /
and the hynerbolic form is taken for k(a, B} < 0. Figure 4.2 gives
example pli*s of g(a, B, ) for 1T=4 and 7 =8 . The dependence
of these amplitudes on the axial wave number o is similar i< that in
the buckling bar, exhibiting a pronounced hump of "preferred'' modes

near Q = l/.\i_Z-. The circumferential wave number of the most ampli~

fied mode is B = 0, i.e., a symmetric mode, but there is an appreciable

bandwidth of amplified modes in both the axial and circumferential
directions. Comparing the curves for 71=4 and 7= 8 we see that as
the motion proceeds, the bandwidth in both directions decreases, tending
ir the limit to produce a fixed axial wavelength corresponding to the
wavenumber o = l/ﬁ—, but tending toward longer wavelengths in the
circumferential direction, ultimately approaching a simple symmetric
pattern corresponding to B = 0 (i.e., n = 0). If the imperfections are
large enough, however, non-linear effects would dominate before the
symmetric mode is attained, producing final buckles with a finite wave~
length in both directions. Buckling of both types were observed in the

experiments described below.

From the definition of k(a, B) in (4. 13) we see that the normalized
amplification curves g(a, B, t) depend only on the ratio U/OCL of the
applied axial stress to the classical static buckling stress. Larger

values give faster growth and narrower bandwidths, but the general

shape of the amplification curves remains about the same for any olch >1,

In the next section it will be shown that the exgﬁcted values of the buckle

wavelengths are very nearly proportional to 5° r/.\/ € , where

r = h/4f12(1-v") and ¢ = 0/E is the strain from the axial thrust,
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Figure 4.3 gives a plot of the maximum value of g (at the peak of
the hump in Fig. 4.2) plotted against time for several values of d/oc

L L]
As a/h —»»® we see from (4.11) that °,

> 0 so thzt the curve for
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¢/ , —» @ is that for a buckling plate (or rectangular bar if the factor

cl
1-v¢ is omitted). For o/ocr> 2 the time required to attain large

amplification is only slightly greater than for the plate.

350 -

300 —
0/Cy~= ®
2%0 —
/e, =4.0
Imax 200 — -
ofog = 2.0 /
50 p— U/Ud s 1.5

100 — o/0cy » 112 / _

NORMALIZED TIME, T

GA-4999-3

FIG. 43 GROWTH OF MAXIMUM AMPLIFICATION WITH TIME

4.3 BUCKLING FROM RANDOM IMPERFECTIONS

To compare theory with experiment, it is necessary to assume some
form of imperfections in order to specify a(a, 8) and hence to compute
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W(a: B ’ T) from (4. 14).
[4.3] demonstrated that a good description of the ohserved buckles was

Experiments on impact buckling of bars in

obtained by assuming imperfections in the form of white noise. These
allow the buckle wavelengths to be dictated by the magnitude of the thrust,
giving a random scatter of wavelengths with a mean and standard deviation
both inversely proportional to the square root of the thrust, in agreement
with experimental observations, It is expected that such an assumption
will also be reasonable in the present problem. Thus, we assume the
a(a, B) are random normal with zero mean and constant variance over
all o and B in the amplified band of interest. With this assumption,
the power spectral density of the modal amplitudes W(a, B, 7) is
proportional to gz(u, B, 7).

Having the power spectral density, the statistics of the buckled
shape can be computed, For the bar [4.3], complete statistics of the
wavelengths were computed using a Monte Carlo technique. The simpler
problem of determining the mean wavelengths can be solved analytically
and will be undertaken here for the shell. From Rice [4.9] the expected
number of zeros in an interval (ll R -2) of a random {function f{ = F(s)
is .

{ o
f ds f ja] P(0, q;: sMdq (4. 16)
0 _

.l -

where P(f . q ; a) is the probability density function for the variables

f = F(s)
dF
L Il ry
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For our problem we have then, that the expected number of zeros in

the & direction in the interval (0, {), for a specified value of n and

0
at [
-

where { = L.\/g and P(w, z; £, n, 1) is the probability density

function of the variables

7 is

4

o

0

2| P(0,2; €, n, 7)dz (4.17)

w = wi€, n, 1)
z=§g

and €, n, 7 are carried along as parameters. Since it has been
assumed that the initial imperfections have a Gaussian probability
distribution (or, alternately, if we apply the central limit theorem for
more general imperfection statistics) then the 1inal buckled form will
also have a Gaussian distribution. Thus, the distribution function has

the form
P(w,z;g.'r.‘r)= ! z]lz'
LT PRI
| (4. 18)
-4 w4 2p  ws 2?
11 it P22
exp : 5
2y upp ¥y )
where ‘
;.i =‘ <w2>
11
2
dap ® <z >

By <wzD>

and <> indicates ensemble average.
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Our results are simplified if it is assumed that the imperfections
and {inal buckled form are stationary (in space} sc that in place of (4, 6)

we Ciii Writo

wi€, n, 1) '~=i i Wmn(‘r) lin(o.m§ - cpm) sin (Bnn- Bn) (4. 19)

m=1 n=1
where the ©m and en are each uniformly distributed over the interval
(0, 2r). With this assumption the statistics of the buckled form are
independent of £ and v , which we would expect to be justifiable for
waves at a sufficient dietance from the ends of tt ¢ cylinder. In fact,
the results of a Monts Carlo computation including end effects for the
bar [ 4.3], which is similar in form to the cylincer, indicate satisfactory
agreement with the stationary process assumption even for the first

wave from the simple support.

Using (4. 19) it can be easily shown that

0 o o @
By © <w?> =ff Wz(a. B, 1_)dud5=c?'f zz(n.a.'r)daée
0

00 (4.20a)
‘ 4 3 22 |
a2 ® <e?> - azwz(a. 8, v )dads =o? a'g (a8, T)dads
_ | (4.20b)
(4. 20¢)

hu# <wzd> = 0‘

where _
. 2 2
g = <a {(a, B)> = constant

and the sums have been replaced by integrale.
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Making use of By = 0 from (4.20c) in (4. i8) and substituting the‘
resulting expression in (4. 17) gives the expected number of zercs in the
length ¢ ,

ot P21/
R = £( 2 (4.21)

H11

The mean wavelength, as measured between alternate zero crossings,
e

is simply
2¢ H11,1/2
A = =< = —
g R 2 ( Fya ) (4.22)
or, upon using (4.20) o -1/2
[ gz(a’ B, 7)dadB
A = o] = (4.23)
2 2
ffa g (a, B, T)dadB
. 00 4

The mean wavelength in the circumferential direction can similarly be

shown to be

- ®, - 1/2

a®
f 8 (Qo 8, 7)d0.d8
0 0
Q
ffﬂz z(ap 8, T)dﬁda
00

b -

(4.24)

'Equations (4.23) and (4. 24) were integrated numerically over the
area 0 £« 52, 0 s 8 s 2 of significant amplification and the results
are presented in Fig. 4.4. In Fig. 4.4(a) the variation of xg and Xﬂ |
with * is shown. Bande have been drawn which contain the curves for

ct in the range from 1,12 to 4.0. The narrowness of these bands

indicates that the most significant parameters affecting wavelength are
those given in the rormalization in (4. 3).
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A'so from Fig. 4.4(a), we see that the mean axial wavelength
increases only siightly with = for - >4 and quickly approaches a

"preferred" wavelength. For ratios of ¢/c , nearing unity the preferred

cl

-

wavelength becomes the classical static wavelength ) _ = 24/2 =. The mean
circumferential wavelength, however, increases with - without approaching
an asymmtotic value. Thus, as discussed in the previous section, the mean
circuinicicrti=l mavelengthg actuallv observed i~ large deflnctic., Luckling
will probably depend on the magnitude of the initial imperfections, which
determines the duration for which this small deflection theory is applicable.
Smaller i nperfections can grow for a longer time and from Fig. 4. 4(a)

we would expect to see longer circumferential wavelengths.

Figure 4.4(b) gives a plot of the aspect ratio | /), . If nonlinear

effec.s begin to dominate at, say ~= 7, and subsequent'buckling proceeds

with a fixed pattern (one woulc expect a fixed pattern to be eventually
established, as confirmed in the experiments}, Fig. 4.4(b) indicates
that the aspect ratio would be about 3.3. This is discussed again in

reference to the experiments.

4.4 EXPERIMENTS

A small-deflection linear theory applied to the static buckling of
cylindrical shells under end load is notoriously inadequate to predict
experimental buckling loads except for very nearly perfect shells. Also,
the shells ultimately buckle intc a form very different from the buckling
mods of the amall-deilection tix‘e.,ory. It is not obvious, then, that the
simple linear theury given here should rcasonably predict the large
deflection dynamic buckling of such a shell. It was thought however,
that the -amall-deflg&ctiq_n theory would give promise for the dynamic
pro!:»!.ein because, oace started in the linear theory pattern, the shell

~ would contihue to deform in this pattern and not have time to convert to
another pattern. The experiments described here were run simultaneously
with the thecretical investigation to determine whether such a theory should

be pursued at all.
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Previous experinientors reported only the final shapes (diamond
buckies) after very severe and prolonged buckling, and ehowed high-
speed (about 15, 000 frames/sec) motion pictures whicu were neverthelr-g
at a speed too slow to show the early buckling process. In order to record
v wasiy motion, tne present experimental arrangement, shown in Fig. 4.5,
incorporated three u...jue features: (1) the shells were free at the end
opposite the impact so that the compressive impact stress would have a
duration (at the impacted end) of,at most,equal to the transit time 2L/c
of the longitudinal etress wave up and down the shell. This allowed termi-
nal observation of early permanent buckling not obliterated by later folding.

{2) The impacted end was bonded with epoxy cement tc a relatively massive

inside ring, and to a thin outside ciag to proviae a clamped boundary to
the shell., Without these rings severe crimping at the end rapidly lowered
the thrust and made compariscn to theory impossible, (3) The massive
end ring was accelerated expiosively so that the time and simultaneity of
impact could be controlled to within about 2 microseconds. This allowed
the use of a Peckman-Whitley framing camera running at 240, 000

frames/sec, fast enough to see the details of early wave formation.

Test shells were made from 0. 00£7-inch-thick 5052-H19
aluminum =heet rolled to a three-inch diameter with a lapped seam
held with cloth tape. The steel ring at the lower end of each shell

(X3

served as the "impacting’' mass and weighed 12 times the weight of the
shell so that its change in velocity during the i:mpaci, and hence the
change in impact stress, was small. The ring was accelerated by placing
it on the heavy steel anvil bar and detonating a sheet explosive charge on

the oppusite end of the anvil. The expleosive sent a steep-fronted shock
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intc the zavil which entered the ring and beunced it off in much the same
way #8 are the end pellets from a Hopkinson bar [4.10]. The preseuce
gradient behind the shock was sufficizntly shallow that the reverberating
stresses in the ring were small and it is assumed that the ring was

stress -free when it "impacted" the cylinder. To insure good transmission

of the shock from the anvil to the ring, tne contact surfaces were lapped.

The ring velocity from vaiious thicknesses of sheet explosive was
determined in a separate series of experiments. Since the ring is very
massive compared to the shell, the impact stress in the shell 18 assumed
tobe pcv, where pc is the acoustic impedance of aluminum shell, and
v is the velocity of the steel ring. The axial strain corresponding to

this stress 1is

= PCV .V
€= E C

where ¢ is the axial wave spced in the shell,

Figiure 4, 6 shows a sequence of framing camera pictures taken in
an experiment in which v = 340 in/sec which, with ¢ = 200, 000 in/sec,
gives ¢ = 0.0017, Substituting a/h = 1.50/0, 0027 = 555 into (4.11)
yields € = 0.00109 so that e/ch 1.56. Thus, the impact stress

is 1.56 times the classical astatic puckling stress. Only alternate frames

from the original record are sanown, giving 8,33 usec between frames

and an exposure time of about 1.4 usec, Normalized time 71 can be
computed from (4. 3) which yields 1 = (ce/r)t = 0.38t . On the original
recerrd, very tiny a.splacements could be discerned at t = 7 psec (7 = 2.6).
At t = 11.2 psec (v=4.2) in Fig. 4.6, small wrinkles near the bottom

of the shell are clearly visible. By t = 27.8 psec (7= 10, 6) these wrinkles
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FIG. 4.6 AXIALLY IMPACTED CYLINDRICAL SHELL
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are definitely taking on the diamond pattern, indicating that nonlinear
effects are predominating. Thus, from 7=2.6 to 7= 10,6 the displace-
ments grow from being just visible to amplitudes so large that nonlinear
effects dominate. Thie agrees very well with the period of first rapid
growth given by the theory. From Fig. 4.3 at Gloc = 1.5 we see that

1
the amplification grows from 8max = 3 at 71=2.6 to 8max - 100 at

AN o,

1=10.6 . It is probable, as discussed later, that nonlinear effects begin

1 PN

.4.,37: g to dominate at an intermediate tirne of about 1+=7,

At frame t = 27,8 psec , the beginning of buckling farther up the

shell is evident. In the following frames these buckles stay fixed in

E position and grow in amplitude. Other buckles appear at areas in between,
at which initial imperfections were probably smaller. The tiny cipples
just above the buckles at the lower end characteristically appeared in 2all

of the experiments. These are most visible at t = 44.5 psec.

To compare the wavelengths in Fig. 4.6 with theory, the expected
value of the axial wavelength is deterrined by substituting \_= 8.9

g
from Fig. 4.4 into (4.3), which yields .

A =’Q A= Lo = 8.9 1
X N g 4 J—e- .

Using ¢=0.0017 and L = 0.0027 inch gives )‘x = 0. 18 inch. From

Fig. 4.6, the average length from 15 waves is )‘x = 0.20 inch, only

10% greater than the theoretical mean.

The permanent buckles remaining in several shells after impact
are shown in Fig. 4. 7. Figure 4. 7(a) is of the same shell as in Fig.
4.6 and it is apparent that all but the lower few buckles in Fig. 4.6 were
elastic, Most of the kinks away from the end in Fig. 4. 7(a) were the
result of difficulties in retrieving the shell (it was projected 12 feet into
the air). In general, permanent buckles were confined to the area close
to the impacted end as seen in all the shells in Fig. 4.7. The most
striking feature of these buckles is their very small size and large aspect .
l ratio as compared to static buckles, For comparison, Fig. 4.8 shows a
statically buckled shell of the same material, wall thickness and diameter

70

g TR

B

—— v e e e saAme ey e e e i i e - . . - ER. i e e 8




(0) o/021.56 (8) o/ogye 198

T30 . auie-?
(c) @/8,,01.20 (4) 0/,31.20
o
L FIG. 4.7 PERMANENT BUCKLES FROM
- AXIAL IMPACT ({(opposite end
N was free)

71

b - - e e e e - s it T L et mhe e s — i e o e S e COURANSRI SR Sy 4 S i < eyt




- OGP RN A

e At e

e 4 o et e e e+

FIG. 4.8 STATIC BUCKLING OF
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as those in Figs. 4.6 and 4.7. The circumferential and axial wave-
lengths are about 1.3 inches, giving an aspect of unity. The dynamic
buckles in Fig. 4.7 have a mean aspect ratio of 3.3 and axial wave-
lengths of only 0. 18 inch. Several shells are shown to illustrate the

wide range of aspect ratio observed. There is little doubt that the

shape of the buckles was strongly influenced by large elastic and plastic
dcformations, but it is significant that the large aspect ratio is suggested

by the linear theory of the preceding sections,

Circumnferential wavelengths were measured from the permanent
buckles in these and two other shells and the results are summarized
in Fig. 4.9. Aspect ratio is plotted rather than wavelength to empha-
size the difference between these buckled forms and static buckles. The

values range from 2,2 to 7.1 with a mean of 3.2. These are much larger
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than the static ratio of about 1. It is difficult to compare these wave~
lengths with the linear theory because, as shown in Fig. 4.4, the theo-
retical wavelengths continually increase with time. However, from

Fig. 4.4(b), the ratio of the theoretical average circuinferential wave-
length to the average axial wavelength is 3,3 at 71=7 . Also, the photo-
graphs in Fig. 4.6 show that this is about the time at which the buckling

amplitude becomes large.

This excellent agreement between theoretical and observed axial
wavelengths, aspect ratios, and buckling times, confirme our original
premise that early small deflection buckling dictates the pattern into
which large deflection buckles form. If more details of the buckling are
desired, displacements in the '"preferred'' wavelengths from the linear
theory could be used as initial conditions in a large deflection theory.
For calculating the threshold of buckling from axial impact, it may be
sufficient to merely define some magnitude of the linear amplification

function as indicative of buckling.

Crumpling of cylindrical shells used as an energy absorbing
mechanism presents a much more complicated theoretical problem in
which the final t i1ckling may be in a mode much different from that
observed here., This occurs because deformation in the very short

axial wavelengths discussed here becomes so large that severe crumpling
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occurs at one or both ends (the duration of the initial thrust is longest’

i

at one end because of the finite speed of axial propagation). This
greatly reduces the thrust and subsequent buckling in the remainder of
the shell probably occurs at a fluctuating thrust which depends on the

buckling itself. An example of such buckling is given in Fig. 4. 10,

FOLDS AT ENDS
N MOOE OF
FIG. 8 :

LATER BUCKLING
AT MUCH REDUCED
AXIAL THRUST

FIG. 4.10 BUCKLING WITH A HEAVY MASS !
ON BOTH ENDS, o/0,, = 1.56
AT INITIAL IMPACT

The impact velocity and shell parameters are the same as in Fig. 4.6,
but now rigid masses are attached at both ends so that buckling pro-
ceeds for a longer time. Buckling away from the ends bears little
resemblance to the impact buckling in Figs. 4.6 and 4.7, and in fact,
is strikingly similar to the static buckling in Fig. 4.8. However, the
crimping near each end in Fig. 4. 10 is of the same form as the impact
buckling in Figs. 4.6 and 4.7. Thus, the present theory predicts the
early phase of buckling and suggests that away from the ends the
transition to the final buckled state is very complex and can be studied

only by including the interaction between the buckling and axial thrust.
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5. DYNAMIC BUCKLING OF A CYLINDRICAL SHELL
OF A STRAIN-RATE SENSITIVE MATERIAL

5.1 INTRODUCTION

In this section the dynamic flow buckling of a cylinder subjected
to a uniform inward radial impulse for the case of a material which
does not exhibit strain hardening but is strain-rate sensitive is investi-
gated. Cylinders of fully annealed 1015 steel, a material known to be
strain-~-rate sensitive [5. 1, 5.2, 5.3, 5.4], were subjected to impul -
sive loads which produced final wrinkled forms similar to that shown

in Fig. 5.1 with average wavelengths that were quite reproducible.
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B FIG. 5.1 TYPICAL BUCKLED SHAPE OF CIRCULAR CYLINDRICAL SHELL
. OF FULLY ANNEALED 1015 STEEL — CYLINDER NO. 1b
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These wavelengths are compared with the predictions of a theory of
flow buckling which assumes that the material is linearly visco-plastic.
The reasonably good correlation suggests that this behavior could

account for the formation of the final buckled shape.

Abrahamson and Goodier [ 5. 5] proposed a theory of the for-
mation of the wrinkled shape based on the dynamics of a metal shell
which deforms plastically with linear strain hardening. This latter
property is crucial to the theory because without it divergent series
result. Experimental and predicted numbers of waves were in good
agreement. Goodier and Mclvor [ 5. 6] gave a similar theoretical
treatment for a material which exhibited both linear strain hardening
and linear strain-rate sensitivity. In particular, theoretical results
are given for linear strain-rate dependency with no strain hardening
(visco-plastic), which is the behavior assumed here. An outline of
the derivation of the equations of motion and their solutions is given

later.
5.2 DYNAMIC FLOW BUCKLING

When the elements of a perfect cylindrical shell simultaneocusly
receive the same large initial inward radial velocity the material flows
into a uniform cylindrical shell of amaller radius and thicker wall until
the initial kinetic energy has been converted into plastic work. Inevitable
sinall imperfections, such as in the uniformity of the initial velocity,
cause perturbLations from this uniform converging motion. Departures
from the circular form are amplified by the action of the compressive
circumferential stress. These departures are considered small enough
to regard the compressive circumferential strain as increasing through-
out the motion. Thus at two points A and B, on the outside and inside
reapectively, as shown in Fig. 5.2, the circumferential strain increases
but more rapidly at B than A due to the slight curvature perturbation.
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On the stress vs. strain-rate
diagram in Fig. 5.2 the representa-
tive points A "and B’ are both
moving to the left with B "lagging
behind A'. The strain-rate law is

STRESS, o

taken as

c=o,* He, (5.1)

STRAIN RATE, «,

“-wn3 where ¢ and e, are the stress

FIG. 5.2 IDEALIZED STRESS, STRAIN-  and the strain rate (subscripts t
RATE LAW denote partial differentiation with

respect to time) and p i3 the slope
of the straight iine. Owing to the difference of circumferential stress
between A’ and B’ there is a bending moment M in the section AB
of the shell. For a unit axial length of cylinder regarded as a ring,
integrating (5. 1) over the cross section, with the assumption that plane
sections remain plane, gives

M = ulx I-= h3/l2 {5.2)

t L]
in which 1 is the second moment of area, h the wall thickness, and
% is the curvature. If the cylinder radius is a and the radizl inward
displacement is w(&, t)

X = fw. +wlal (5.3)

89
in which the subscripts 9 denote partial differentiation with respect
to the angular coordinate §. The final inward displacement is con-
sidered smail enough to allow ‘lLic use of the initial vaiucs of the radius

and thickness.

The lack of uniformity around the ring of the mean circum-

ferential stress is neglected. Also, i1t is assumed that the slops




of the stress vs. strain-rate line is small so that the mean circum-
ferentiai stress may be considered independent of time. Consequently,
a constant circumferential force S is taken throughout the inward

motion.
5,3 EQUATIONS OF MOTION

From Fig. 5.3, which shows an element of the ring with its
attending forces and moments, the
equations of equilihrium or motion
(neglecting rotary inertia) may be

written as

Q= M, (5.4)

and

Q, +8p, = -mw, (5.5)

FIG. 5.3 NOTATION. ELEMENT

OF SHELL IN MOTION in which Q is the shear force, d\

the arc element corresponding to
d® but now subtending an angle do,
m the mass per unit run of circumference, and the subscripts denote

partial differentiation. ®, is the curvature and is given by
@ = 1/a + » (5. 6}

Combining Eqs. (5.4) and (5. 6) and performing the operztions
necessary to eliminate Q, M and x» yiclds the following equation for

w3

R wea)t/a4 +S[1/a + (o + w)/al] = -mw (5.7)

tt

It is convenient to introduce the dimensionless displacement

and time variables

u=w/a , 1T= Mt/ma4 (5.8)
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and the dimensionless constant

s = Smaé/pzlz = 14&}00pa6/pzh4

where p is the cylinder material density.
Then (5, 10) can be written in the form

2 . .2
u_. + (uee + u’967+ 8 (uee+ u) = -s

SOLUTION

A particular solution up of (5.10) may be obtained by assuming
that the dimensionless displacement ia independent of 8 . It represents

the unperturbed motion and i¢ a solution of the equation

u’’ +szu z - g®

where the primes denote differentiation with respect to .

Let V_ be the initial impulsive velocity. Then w.(8,0)=V

o
and

= 3,1 =
u (6,0) =V ma /ul = A (5. 12)

With the initial conditions up(o) =0 and ul;(o) = v, the solution
of (5.11) is

up(‘r) =-1+cossT+ (Vo/s)siRST (5. 13)

This unperturbed moticn ceases when ul;('r) = 0, Hence its

duration is given by the smallest root of

tansrt = vo/s
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It is an approximation to the duration when slight wrinkling occurs
since the plastic work done in shortening the circumference is not .

influenced to the first order by the slight wrinkling.

A alightly nonuniform initial velocity may be represented in

the form

w, (8, 0) = VO[ 1+ zz(an cosn@+ B sinn@ )]
n=

© (5. 15)

u1(e, o) = Vo[ 1+ ZZ (a cosnb+ 8 sinnd))
n=

Terms with n=1 are omitted since they do not contribute to the defor-

mation of the circular shape.

The solution of the reduced form of (5.10) may be taken in the

form -
©
u= 3 [fn('r) cos nb + gn('r)sinne] (5.16)
n=2
where fn must satisfy the equation .

v 2,2 .2 2, _
fn +n (n -l)fn-(n -1)s fn-O

The function g, must satisfy the same d.fferential equation.

The appropriate solutions for fn and g, are

Ao AT
fn = Bne + Cne (5.17)
7\;1' A r
g, = D¢ + Ene (5.18) .
82




where

)\: N [nZ(nZ -1/2][0 +452/{n4(n2 - l)} )l/2 -1)
(5. 19)

A = [22(n? - 1)/2][ 1 + 48/ {n‘*(nz-l;})”znl

The constants in (5.17) and (5. 18) are cbtained from the initial
conditions u(6,0) = 0 and uT(e. o) given by (5,15), When the resulting
functions fn and g, are substituted into (5. 16) and the resulting
complementary solution added to the particular solution (5. 13) the final
solution is

®

uz-l+cosst+ (vols)ainsT tv hX An(T)(ancos ng+ g _sinnd)  (5.20)

n=2
where
AT A
An('r) = (e -e )/(xn - kn) (5.21)

- + . .
Ay zmd\)‘tn being given by (5. 19).

From a comparison of the expressions (5.15) and (5. 20} it can
be seen that An('r) may be considered as an amplification factor which
depends on the harmonic and time. Knowing An('r) determines the
effect of the initial velocity perturbations on the motion. One important
property of the amplification factor is that it tends to zero as n increases.
In fact for n large enough A~ lin‘ . This ensures the convergence
of the series representation (5.20) and shows that the higher harmonics
in the velocity perturbation will have little influence on the final wrinkled

state.

5.5 STRAIN REVERSAL

N The foregoing theory is valid until strain reversal begins.

For points on the outside and inside surfaces the circumferential
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compressive strain is

(l-h/Za)(wla-hwee/Zaz) and (l+h/2a)(w/a+hwee/232)

and strain reversal begins when one of these reaches a maximum

positive value and then decreases. When this occurs the strain rate

at the inner or outer fiber is zero. The second factors in the above
expressions, in dimensionless terms, are u ¥ huee/Za , and from

(5.20) are representable in the form

u ¥ huGGIZa = -1+ cos s‘r(vo/s)sins'r
(5.22)

+vy T (1t g=n°)A (1) (@ cosns +B_sinng)
=2

the strain history is thus determined by (5. 22).
5.6 RANDOM VELOCITY PERTURBATIONS

From (5.15) the perturbation of the initial velocity is

xX -]
u_(8,0) = )X (a, cosnd + b_sinng) = Y c cos (nf-8) (5.23)
n=2 n=2
where
_ _ 2_.2, 2, .2
3 " Vo%n bn - Van » and “n © vo("‘n * Bn)

It can be seen from (5.20) that if '57(9. o) is given, the final wrinkled
shape is known. With a statistical approach, Lindberg [5.7, 5.8]
demonstrated that, in the case of the impact buckling of thin bars and
cylinders, the assumption of imperfections in the initial displacements
of the white noise type (displacements composed of harmonics of equal

amplitude, random phase and with a uniform spectral density) led to
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a good description of experimentally observed wavelengths. Here,

a similar assumption will be made concerning the perturbation of the
initial velocity. The random process will be considered stationary
and ergodic. In order to bring out the analogy between the present
problem and the relevant parts of the article of Rice [5.9] on random
noise currents the following change of variable and substitutions are
made in (5,23"

8 = 2mep/o

‘where

0Ospsop, fn=n/qo and w =2rf

then (5.23) becomes

\TT(O. o)=Y c, co8(w =8 ) (5.24)
n=2

Now the kinetic energy associated with the perturbed initial
velocity is

2n $ ™
1 F ~2 _ 1 1 2 _ 1 1 2
3 ma f u (8)ds = Z(Znam)$fuT (p)doy = 2—(211am)Z ) n
¢} o 1

and that associated with the n-th component is proportional to ci/ 2.

Defining w(fn) as a kinetic energy density (power spectral
density) it follows that w(fn)Af = ci/Z where Af is the ''bandwidth"

associated with the n-th component of G'T so that

af = frH-l - fn =19
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For a white noise velocity perturbation ¢, ¥ ¢, aconstant,

; ; and the kinetic energy density is uniform at w(fn) = cch/Z . Algo the

; phase angles Gn in (5.24) are randomly distributed between 0 and
‘ an.
i It follows from (5.20) that the perturbed deformation is
| N
; u(g, 1) =cy An('r) cos (wncp- en) (5.25)
A 2
'.‘ where N is large enough to consider A negligible (An ~ l/r:4 for

large n and shows a behavior analogous to 2 filter).

Applying now the theorem of Rice [5.9] for the expected
number of zeros per unit angle ¢ and converting this to the number

of waves Nl for 8 in (0,2m) gives

0 AT RO Ay e M

— T 1/2

/

N o= (5.26)
/
0

5.7 NUMERICAL ANALYSIS AND EXPERIMENTAL RESULTS

Figure 5.4 is a stress-strain diagram obtained from a static

tensile test on one of several specimens of fully annealed 1015 sieel

) which were cut from cylinders. It demonstrates the lack of strain
hardening below about 3 percent strain. According to the experimental
results of Manjoine [5.1) the material is extremely sensitive to the

rate of strain; both the length of the horirontal or ideally plastic portion

of the stress-strain curve and the yield stress increase with strain
rate, Based on these results an empirical relation between yield stress

o and strain-rate ¢, has been suggested by Symonds and Bodner { 5. 9]

; t
o in the form

- 1/p
o/oy =1+ (et/D) (5.27)
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| ¢ where ¢ is the static yield
. OO T—T—T T T T 1 y
stress, and p and D are
empirical constants, For mild
. 30,600

steel these are taken as o_j =
30,000 Ib/in%, p =5, and
D =40.4 sec~l .

!
;
i
%

4
b bR A e

; o 40000 ,
: S
3 s :
N The curve (5.27) is shown :
f | | 30000 ;
. A in Fig. 5.5. In the development :
i W
& of the theory the linear strain-
L]

20,000 rate law (5.1) was used and this

is here taken as the equation of

W o et et oo e

10,000 I~ — the tangent to the curve (5.27)
at the point corresponding to the
ol 1 1 1 1 1 | value of the initial strain-rate ;-
0 2.0 4.0 6.0 8.0 |

PERCENTAGE STRAIN €,{0). An example of such a

- -2 . . .
tangent is shown in Fig. 5.5.

FIG. 5.4 STATIC STRESS-STRAIN DIAGRAM  The slope of the tangent is
FOR FULLY ANNEALED

. 1015 STEEL "z oy/(pD”pctl-”P) (5.28)

and the value of o_ is given by the point of intersection of the tangent

o
i with the axis €, = 0.

All numerical cases correspond to experiments that are

! described later and the main resuits are listed in Table 5. 1. The
initial velocities Vo are obtained from impulse calibration experi- ;
ments for the explosive used in eimilar configurations. The sequence i
of operations for finding the predicted number of waves around the
cylinder is ag follows., From the value of Vo the initial strain-rate
ct(O) = V/a is found and hence from {5.27), (5.28), and i5. 1), o and
4 are found. Next, the dimensionless constants S and Vo are
determined by (5.9) and (5.12). Equation (5. 14) can now »e solved for

1 which represents the duration of motjon; then (5. 8] gives the actual |
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approximate duration., The spectrum of the amplification factor
An(‘r) follows from (5.21). Finally, the expected number of waves
M, ir computed from (5. 26).
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STRAIN-RATE, ¢ — sec A-4909-34

FIG. 5.5 STRAIN-RATE LAWS

Table 5.1 contains the values of n where An is a maximum
at each quarter of the duration, It also contains the values of Nx at
these times. This is done to show the variation of the most amplified
harmonic and the expected number of waves with time. In many c~aes
the variation is not great, Figures 5.6 and 5.7 show the amplification
spectra for the cylinders numbered 3a and 4a. For case 4a, it can be
seen from Fig. 5.7 th - there is a rapid growth of the amplification
factors for harmonics about the value n = |2 and that above n = 30
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virtually no amplification occurs (An ~ l/n4 for large n ). During
the final three~quarters of the duration of motion the values of n at
peak An move from n = 8 ton = 12 while the expected number of
waves N, moves only from N, = 12 to N)\ = 14 . The magnification
factor curves of Figs. 5.6 and 5. 7 are quite typical and similar shifts
in the most amp!lified harmonic and expected number of waves occur

as deformation proceeds.

Again for cases 3a and 4a random initial velocity perturbations
were considered. In case 3a, the first 50 harmonics of constant ampli-

tude ¢ and random phase (white noise) were emplcyed in {5.23) and

the representation is shown in Fig. 5.8(a). The resulting perturbed

llws

ullﬂs

3 . i ] i i

’. | ‘e ) 100 1% 700 %0 300 30

| . ¢’ — oeoees « o
FIG. 5.8 RESPONSE OF CYLINDER 3o TO WHITE NOISE VELOCITY PERTURBATIONS

{a) Inihial velocsty perturbution, (b} Buckled form atter 28 ;. sec, (c) Buckled form aiter
42 psec, ond {d) Buckled lorm oher 56 usec

c bt ¥ by s S AR A 2
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inward d’splacements in the form u/c were obtained from {5.25) at
one-~half, three-quarters, and at the whole of the duration of motion.
They are shown in Figs. 5.8(b}, (c), and (d), respectively and provide
an illustration of the development of the buckled form. The higher
harmonics in the initial velocity perturbation are filtered out because
of the form of the epectrum of the amplification factor (Fig. 5.6}, In
the example of Fig. 5.8, a preferred wavelength exists corresponding
to 18 waves around the cylinder, the expected number of waves if

N, = 14, and cne experiment gave 13 waves. For case 4a, Fig. 5.7(a)
shows a perturbed initial velocity using the first 30 harmonics of eqral
amplitude and random phase. The development of the buckled form can
be seen in Figs, 5.7(b), {(c), and (d). The higher harmonics are
filtered out, 15 waves develop around the cylinder, the expected number

of waves is NX = 14, and the experimental numbzr is 9 waves.

The amplitudes of the initial imperfections are considered small
enough tc avuid strain reversal. Experimental values for the number
of waves comprise the right-hand column of Table 5.1 and can be com~
pared with the expected number of waves of the most amplified harmonic,
the for.mer being more meaningful but the latter serving as an indicator.
The degree of agreement lends credibility to the postulated mechanism,

at least as a first-order description.

For cylinders 3a and 4a, Figs. 5.10 and 5. 11 show the
developed final shapes and can be compared with the predicted shapex
of Figs. 5.8(d) and 5.9(d) respectively. Apart from the lower harmonics
prescat in the experiments due to a slight lack of circularity of the
cylinders the buckled forms are similar. For these two cylinder har-
monic analyses (trigonometric interpolation) [5.10] of the experimental
buckled forms were carried out and the resuits are shown in Figs.

5.12 and 5.13. The representation was taken i1 the form
[==]

u(®, 1= ¥ cncos(ne - cpn)
o
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with data recorded at every degree and the coefficients c plotted
against n . The large coefficients for the lower harmonics are due to
the initial lack of circularity of the cylinders. In case 3a peaks occur
at n=6, 9, 11, and 15, and components above n = 22 are negligible.
In case 4a peaks occur at n=7, 10, and 13, and components above

n =16 are negligible. No major conflict arises with the amplitude

curves of Figs. 5.6 and 5. 7.
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(o] %0 00 130 200 2% 300 350
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FIG. 5.9 RESPONSE OF CYLINDER 4a TO WHITE NOISE VELOCITY PERTURBATIONS
() Initial velocity perturbation, (b) Buckled form after 28.5 usec, (c) Buckled form
after 42.75 psec, and (d) Buckled form after 57 psec
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FiG. 5.10 BUCKLED FORM CF CYLINDER 3¢

5.8 EXPERIMENTAL TECHNIQUES

The buckled cylinder of Fig., 5.1 was produced with the experi-
mental arrangement shown in Fig. 5,14. Enclosing the cylinder is an
attenuater of 1/4-inch-thick neoprene foam and a layer of explosive.
The attenuator, which is necessary to prevent the cylinder from
spalling, extends beyond the end of the cylinder to provide support
for the explosive. The detonacor starts from an electrical signaland
is connected to the main charge by several strips of explosive, Deto-
nation fronts initiated in the main charge by the strips of explosive
expand from the initiation points and coalesce into a single ring-shaped
detonation front in the '"run-up" part of the main charge, The detonation
front, which is of the order of a few mils wide, subsequently sweeps

over the cylinder at a rate of 23, 300 ft/sec.
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FIG. 5.11 BUCKLED FORM OF CYLINDER 4a
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A shock wave is induced :n the attenuator by the detonation
front and is transmitted from the attenuator to the cylinder, imparting

an impulsive velocity Vo {see Table 5.1).

Maximum variations in the thickness of thz explosive are from
2 to 5 percent for charges from 12 to 57 mila thick, the larger variations
going with the thinner chargea. The variations in thickness are gradual

except across joints. Variations in the thickness of the explosive and

96




the uncertainty in the impulse developed by the explosive combine to
give an uncertainty of the order of 10 percent in the velocities imparted

. to the cylinders.

§ Table 5.1 gives the properties of the cylinders tested and the
s initial velocities vV, were obtained by taking an impulse constant for

the explosive-attenuator-target configuration of 2.4 x 105 dyne-aec/cm3.

P g

5.9 CONCLUSIONS

In its present form the ti.eory does a satisfactory job of pre-
dicting the buckled forms of cylinders of rate-sensitive material.
There appear to be no major contradictions to the poatulated mechanism
of deformation although it would be desirable to have more experimental
evidence and to look more thoroughly into other aspects of the problem
such as the sensitivity of the solution to the strain-rate law and to the
initial velocity, and strain reversal. The theory as it stands is scme-~
what idealized but seems adequately compensated by simplicity and
usefulness.
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6. CORRELATION OF STRUCTURAL RESPONSE INFORMATION

6.1 INTRODUCTION

Over the past several years there have been many investigations
of the failure of space-vehicle -type structures under suddenly applied
external surface loads. It has been suggested that the results of these
investigations be correlated to maximize their usefulness and indicate

areas where further investigations are desirable.

The problem of correlating the results of structural response
investigations has at leaat two aspects: (1) the development of a scheme
for comparing the results, and (2) the incorporation of the results into
the scheme. The following presentation is based on this division of the

problem,

6.2 SCHEME FOR CORRELATING THE RESULTS OF
STRUCTURAL RESPONSE INVESTIGATIONS

To facilitate the correlation of the results of structural response
investigations it is highly desirable to have a simple and direct me: rs
of comparison. For static loads, results are usually summari.ed by
giving the load magnitude which produces a critical stress, strain, or
displacement in the structure. The same format appears suitable fur

dynamic loads.

Dynamic loads of the same spacial distribution and pulse shape
(time variation) which produce the same critical strzsses, strains,
and/or displacements in a structure exhibit a simple rel'atiomlhip when
plotted in the amplitude-impulse plane. Figure 6.1 illustrates the
relationship between amplitude and impulse for rectangular pulses which
produce the same maximum displacement of a linear oscillator, In the
region where the curve approaches the vertical asymptote the load

amplitude becomes unimportant and only the impulse is significant.
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In the region where the curve approaches the horizontal asymptote,
the impulse becomes unimportant and only the amplitude is significant.

In the intermediate region both amplitude and impulse are significant,

Figure 6.2 shows the amplitude-impulse curves for rectangular
and triangular pulses which produce the same displacement of a single-
degree-of-freedom system of a rigid-plastic material. The curves

have the same zeneral shape as that of Fig. 6. 1.

Tests of more complex systema such as cylindrical shells,
which have a variation in response mode with load amplitude and
impulse (for loads of the same spacial distribution and pulse shape),
exhibit the same general relationship as that of Figs. 6.1 and 6.2
between the amplituae and in:pulse combinations which produce the

saine pa2rmarneat displacement.

The response modes of the preceding examples are not sensitive
to stress waves and are terined unitary modes. Lcads which excite
modes which are sensitive to stress waves, termed laminar modes,

are aisc conveniently displayed in the amplitude -impulse plane.

l"I-"or a linear oscillator, the information given by the amplitude-impulse
curve (Fig. 6.1) is related to that given by the shock spectrum [ 6.1].
For a load of given shape, the shock spectrum gives the response of
a linear osciliator as a function of the frequency of the oscillator for
a load of unit amplitude, while the amplitude-impulse diagram gives
the amplitude and imprlse combinations which evoke a given response
from an oscillator of given frequency.

In a complex structure many modes are excited and a one-~to-one
correspondence between the amplitude-impulse diagram and the shock
cwustrum does not exist. For such structures. the amplitude -impulse
diagram displays the loads which evoke a given peak response in the
structure, including effects of all modes uf deformation, even if the
respcnse is nonlinear and linear superpo.ition is invalid. The shock
spectrum gives the peak response of each mode, and in some cascs
(the response must be linear and the frequency spread must be limited)
these can be superposed to determine an approximate peak response

of the structure.
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MATLRLIL. Mere o is yield strasy, k is woil thickness, o v
cylinder rodius, € i straie, and p is dens’ry.

Figure 6.3 shows schematically the amplitude -impulse diagram for the
loads required to produce a given deformation of a thin cyiindrical shell
contained within a close-fitting #iuzeve which is loaded uniformly on the
exter\ior. The impulsc is constant {(vertical part of curve) until the load
duration erceeds twice the transit time through the inaer shell., For
monotonically decrcasing pulses, 3t icrnger durations the amplitude

decreases anid approaches a limitirg valae,

Figurs 6.4 shows the amplitude-impulse curve for uniform
loads of recizngular shape required to produce cracking {from hoop
tension) of a thin cyiindrical shell by rebound from an internal mandrel.
The jagged nature of the curte is due to peculiarities associated with

the rapid decay of rectangular pulses.
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FiG. 0.3 SCHEMATIC AMPLITUDE-IMPULSE DIAGRAM FOR A THIN
CYLINDRICAL SHELL CONTAINED WITHIN A CLOSE-
FITTING SLEEVE LOADED ON THE FXTERIGR

From the foregoing, it appears that amplitude -impulse diagrams
afford a convenient basis for comparison of the results of structural
resporse investigations having the ultimate obie_tive of predicting
failure loads. A particularly desirable fcature is that the asymptctes
of the ampiitude «impuise curves, which correspond to ahort-duration
and long-duration loads, are generally the easiest part of the curvee
to establish theoretically and experimentally. Alsc, {or most structures,
the general shape of the curve will be sumilar to that of Figs., 6.1 to
5.4, and hence interpolation is simple. Another desirabie feature is
that amplitude and impulse are casily related to weapon yield and

ranye.

With this approach, to completely describe the failure loads
far & given structure with a given {ailure criteria requires a set of

amplitude~impulse curves, one curve for each load distribaticn and

pulse shape. Such a set of curves would appear to satisiy the neads of
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FIG. 6.4 SCHEMATIC AMPLITUDE-IMPULSE DIAGRAM FOR RECTANGULAR PULSES
TO PRODUCE CRACKING (from hoop tension) OF A THIN CYLINDRICAL SHELL
BY REBOUND FROM AN INTERNAL MANDREL

the designer, whe must design structures to carry certain loads, and
of the analyst, who must determine the failure loads of given struc-

tures,

6.3 CORRELATION OF THE RESULTS OF STRUCTURAL
RESPONSE INVESTIGATIONS

Of t© vast amount of structural regsponse information avail-
able, only a very small part iy relevant to the problem of determining
failure loads or space-vehicle-type strucinres under suddenly apolied

external guriace loads. Most of the availabi> structural respcuse
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for the present application since, for the structures of greatest interest,

failure generally involves significant permanent deformation. More-
over, of the available information on permanent deformation of struc-

tures, most is for static loads.

Information on permanent deformation of space~vehicle-type
structures under suddenly applied external surface loads appears to
stem from three main rces: (l) investigations of effects of air
blasts on airplane structures, {2} investigations of the effects of under-
water blasts on ship and submarine hulls, and (3) recent investigations
on the effects cf suddenly applied external surface lcads on space-
vehicle-type structures  Thze re- ults of the investigations on aircraft
are of some interest fcr lightweight sac. lites, but are of very limited
use for the relatively thick-walled structures of re-entry vehicles.

The results of investigations on ship and submarine hulls should provide
significant information on re-entry vehicle structures. Unfortunately,
this information has been inaccessible. Therefore, the following
discussion is based on the recent investigations undertaken specifically
to obtain additional information on the response of space-vehicle-type

structures under suddenly applied exiernal surface loads.

The basic structural element of space vehicles in general is
the cylindrical shell, or conical shell of small angle. The first known
attempt to determine bounds on a wide range of suddenly applied
external surface loads which produce a given perraanent deformation
of a cylindrical shell is that described in [6.2], and was concerncd
with smoothly varying load distributions. The bounding curves found
are shown in Fig, 6.5. The upper bound, shown for rectangular and
triangular pulse shapes, are the loads which produce 10 percent defor-
mation of a uniformly loaded cylindrical shell of a rigid-plastic material
which responds in uniform radial inotion (i.e., buckling is exc'uded).
Since in this mode the maximum amount of energy is absorbcd in plastic
work per unit deformation, and no actual load could nroduce such an
idealized resnonse, this is an absolute upper bound on actual loads

which produce the same deformation, {Gr any cylindrical shell.
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FIG. 6.5 BOUNDING CURVES ON SUDDENLY-APPLIED EXTERNAL
SURFACE LOADS OF SMOOTHLY VARYING DISTRIBUTION
TO PRODUCE 10 PERCENT DEFORMATION OF A
CYL.INDRICAL SHELL. (See Caption to Fig. 8.1 for definitions.)

The lower bound ie based on limited experimental results
[6.3], [6.6], and in view of the extensive effort being made to obtain
additional information on failure loads of cylindrical shells, should be

regarded as tentative.

The effort alluded to above is that being undertaken at SRI
under Contract P.O. 24-14517 under AF '.694)-655 with Lockheed
wviissiles and Space Cornpany for the Air I'osrce. This is a combined
experimental and theoretical effort with the objective of establishing
the amplitude -impulse curves for suddenly applied external surface
loads of smoothly varying distribution which produce 10 percent defor-
mation of monocoque cylindrical shells and multilayer cylindrical
shells typical of space vehicles. The experiments thus far have shown
that burkiing is a predominant failure mechanism over the entire load
range. The theory which is being developed is based on this mecharism.

A report on this work is expected to be available in late 1607,
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Except for the extensive expé rimental effort by BRL { 6. 6], the

¥ results of which were included in determining the lower bound shown in
Fig. 6.5, the results of other investigations on cylinders have not yet
- been cast in the form of amplitude -impulse diagrams.

Other structural elements of interest for space vehicles are
spherical shells. beams, and plates. Fcr spherical caps, an upper
bound can be obtained on the same basis as that for cylindrical shells.
The resulting curve is given by Fig. 6.5 with o= 2ch/a and Io =ﬁ;‘,7p_ h.
No data or theory are kncwn which would establish a curve of load ampli-
tude and impulse to produce a given permanent deformation of spherical
shells.

In a recently submitted report [6. 4], theoretical ampli.ude -
impulse curves are presented for rigid-plasiic bearns and plates under
a variety of boundary conditions and loads. However, the curves depart
by facvors of 3 to 10 frorm experimental results, Considerable rnore
work is needed to refine the amplitude-impulse curves for beams and

plates.,

Amplitude-impulse curves for failure (in hoop tension) of a thin
cylindrical shell by rebound from an internal sleeve for uniformly distri-
buted pulses of rectangular form are given in [6.5]. This work will be
extended in the near future for uniformly distributed pulses of triangular

and exponential forms.,
6.4 CONCLUSIONS

Amplitude -impulse diagrams appear to offer a meaningful and
convenient way to represent dynamic failure loads. If this scheme is '
adopted, amplitude-impulsz curves should be established for failure i

loads for all important structural elements of space vehicles,

Presently available theoretical and experimental information
for establishing failure loadsg of space-vehicle-type structures is
severely limited. Investigations now underway should sigbnificantly

improve this situation.
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7. OTHER INVESTIGATIONS

7.1 INTERACTION OF SHOCK EFFECTS AND STRUCTURAL
EFFECTS

When a shell structure is exposed to an external impulsive
surface load a shock wave is generated which propagates in from the
exposed surface. If the load is sufficiently intense, the structure will
be destroy.e‘d.

Two basic types of damage from impulsive surface loads have
been identified; shock damage and structural damage. Shock damage
is that due to stress wave interactions and generally occurs on the first
or second transit of the stress wave through the wall of the structure,
and, for common space vehicles, this is usually within a few micro-
seconds after the application of the load. Structural damage is that due
to the average velocity of the shell of the structure and generally occurs
50 psec or more after the application of the load, for common space

vehicle structures,

In investigating the response of space vehicle structures to
impulsive surface loads, it has become cornmon practice to study shock
efiecis and structural effects separate.y. This division is certainly
valid for shock effects, which occur too early to be influenced by struc-

tural action. However, shock effects may influence structural effects.

. The division of the response problem into shock effects and
structural effects is based on the vastiy different time scales of the two
phenomena. Exnept for obvious interaction effects such as spalling,
cracking, etc,, thia.divisién assumes that the siress waves have suu-
sided to insignificant amplitudes bYefore siructural deformation becomes

significant.
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For two-layered structures of nonmetallic heat shield and metal
base structure, it has been shown [7. 1] that for elastic stresses,
about five wave tranaits through the layers is sufficient to attenuate the
stress amplitude of the stress waves to about 20 percent or less of the
initial amplitude. For common espace vehicles, this requires less
than 50 pusec. Hence for such structures the separation of the response

into shock effects and structural effects is valid.

The attenuation of stress waves in single-layer structures
depends on details of the equation of state of the material. This was

not investigated on the present contract.
7.2 PREDICTION OF ACCELERATIONS FROM SHOCK LOADING

Accelerations from suddenly applied surface loads can produce
accelerations which damage internal components of space vehicles. It

would be highly desirable to have a means of predicting the accelerations

from a given load. However, experiments on a mocked-up satellite
vehicle undertaken on Contract AF 29(601)-6435 indicate that internal
accelerations are very sensitive to the local construction, so much so
that it appears unlikeiyl that a useful general method of predicting

accelerations even for simple struciures can be expected.
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